解线性代数方程组的迭代法ppt课件.ppt
《解线性代数方程组的迭代法ppt课件.ppt》由会员分享,可在线阅读,更多相关《解线性代数方程组的迭代法ppt课件.ppt(59页珍藏版)》请在三一办公上搜索。
1、迭代法适用于求解大型稀疏的线性方程组,其基本思想是通过构造迭代格式产生迭代序列,由迭代序列来逼近原方程组的解,因此,要解决的基本问题是:1. 如何构造迭代格式 2.迭代序列是否收敛,第六章 解线性代数方程组的迭代法,一 . 基本迭代法的格式及收敛性二 . 几种实用的基本迭代法三 . 应用实例,一 . 基本迭代法的格式及收敛性,设有线性代数方程组 a11x1+a12x2+a1nxn=b1 a21x1+a22x2+a2nxn=b2 . . . . . . . . . . . . . . . . . . . . . an1x1+an2x2+annxn=bn,用矩阵表示: Ax =b A 为系数矩阵,
2、非奇异且设aii0;b为右端,x为解向量,注:分解A是一个重要问题,在Rn中,点列的收敛等价于每个分量的收敛。即,二.几种实用的基本迭代法,1、Jacobi迭代法2、Gauss-Seidel迭代法3、超松弛迭代法(SOR),1、Jacobi 迭代,Jacobi迭代矩阵,推导其分量形式,第i个方程除以aii(i =1,2,n),得,Jacobi迭代的分量形式,则 x(k+1)=BJx(k)+g ,这里 BJ=D-1(L+U) , g=D-1b,Jacobi迭代公式(分量形式),给出初始向量 x(0), 即可得到向量序列: x(1),x(2),x(k),若 x(k) x*, 则x*是解。,例1:设
3、方程组为,解:Jacobi迭代格式为,试写出其Jacobi分量迭代格式以及相应的迭代矩阵,并求解。,故Jacobi迭代矩阵为,取 x(0)=(0,0,0)t, e=10-3,终止准则:x(k)-x(k-1)e,例2:设方程组为,解: Gauss-Seidel迭代格式为,试写出Gauss-Seidel迭代格式.,2、Gauss-Seidel迭代法,Gauss-Seidel迭代的分量形式,推导Gauss-Seidel迭代法的矩阵形式,Gauss-Seidel迭代矩阵,Gauss-Seidel迭代公式,给出初始向量 x(0), 即可得到向量序列: x(1),x(2),x(k),若 x(k) x*,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 方程组 迭代法 ppt 课件
链接地址:https://www.31ppt.com/p-1438385.html