结构动力学概述ppt课件.ppt
《结构动力学概述ppt课件.ppt》由会员分享,可在线阅读,更多相关《结构动力学概述ppt课件.ppt(182页珍藏版)》请在三一办公上搜索。
1、第一章 结构动力学概述,结构动力学是结构力学的一个分支,着重研究结构对于动荷载的响应(如位移、应力等的时间历程),以便确定结构的承载能力和动力学特性,或为改善结构的性能提供依据。,动荷载的特性结构的动力特性结构响应分析,大小方向作用点,大小方向作用点时间变化,数值,时间函数,结构动力体系,1-2 动荷载的定义和分类,荷载:荷载三要素:荷载分类:,作用在结构上的主动力,大小、方向和作用点,作用时间:作用位置:对结构产生的动力效应:,恒载 活载,固定荷载 移动荷载,静荷载 动荷载,大小、方向和作用点不随时间变化或变化很缓慢的荷载。,静荷载:动荷载:,大小、方向或作用点随时间变化很快的荷载。,是否会
2、使结构产生显著的加速度,快慢标准:,质量运动加速度所引起的惯性力与荷载相比是否可以忽略,显著标准:,动荷载的定义,荷载在大小、方向或作用点方面随时间变化,使得质量运动加速度所引起的惯性力与荷载相比大到不可忽略时,则把这种荷载称为动荷载。,问题:你知道有哪些动荷载?,动荷载的分类:,概念:动荷载是时间的函数!,分类:,动荷载,突加荷载,冲击荷载,确定性荷载:,例如: 简谐荷载,荷载的变化是时间的确定性函数。,非确定性荷载:,例如:,风荷载,地震作用,平均风,脉动风,荷载随时间的变化是不确定的或不确知的,又称为随机荷载。,结构在确定性荷载作用下的响应分析通常称为结构振动分析。,结构在随机荷载作用下
3、的响应分析,被称为结构的随机振动分析。,本课程主要学习确定性荷载作用下的结构振动分析。,与结构静力学相比,动力学的复杂性表现在:,1-3 动力问题的基本特性,动力问题具有随时间而变化的性质;数学解答不是单一的数值,而是时间的函数;惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分!引入惯性力后涉及到二阶微分方程的求解;需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响;,1-4 离散化方法,1. 集中质量法,把结构的分布质量按一定的规则集中到结构的某个或某些位置上,成为一系列离散的质点或质量块 。,适用于大部分质量集中在若干离散点上的结构。例如:房屋结构一般简化为层间剪切模型。
4、,例如:,适用于质量分布比较均匀,形状规则且边界条件易于处理的结构。例如:右图简支梁的变形可以用三角函数的线性组合来表示。,2. 广义坐标法,假定具有分布质量的结构在振动时的位移曲线可用一系列规定的位移曲线的和来表示:,则组合系数Ak(t)称为体系的广义坐标。,定义,假定具有分布质量的结构在振动时的位移曲线为 y(x,t),可用一系列位移函数 的线性组合来表示:,广义坐标表示相应位移函数的幅值,是随时间变化的函数。广义坐标确定后,可由给定的位移函数确定结构振动的位移曲线。以广义坐标作为自由度,将无限自由度体系转化为有限个自由度。所采用的广义坐标数代表了所考虑的自由度数。,3. 有限单元法,先把
5、结构划分成适当(任意)数量的单元;对每个单元施行广义坐标法,通常取单元的节点位移作为广义坐标;对每个广义坐标取相应的位移函数 (插值函数);由此提供了一种有效的、标准 化的、用一系列离散坐标表示无限自由度的结构体系。,要点:, 将有限元法的思想用于解决结构的动力计算问题。,对分布质量的实际结构,体系的自由度数为单元节点可发生的独立位移未知量的总个数。综合了集中质量法和广义坐标法的某些特点,是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法。已有不少专用的或通用的程序(如SAP,ANSYS等)供结构分析之用。包括静力、动力 和稳定分
6、析。,大型桥梁结构的有限元模型,1-5 运动方程的建立,在结构动力分析中,描述体系质量运动规律的数学方程,称为体系的运动微分方程,简称运动方程。,定义,运动方程的解揭示了体系在各自由度方向的位移随时间变化的规律。建立运动方程是求解结构振动问题的重要基础。常用方法:直接平衡法、虚功法、变分法。,建立体系运动方程的方法,直接平衡法,又称动静法,将动力学问题转化为任一时刻的静力学问题:根据达朗贝尔原理,把惯性力作为附加的虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载,使体系处于动力平衡条件,按照静力学中建立平衡方程的思路,直接写出运动方程。虚功法: 根据虚功原理,即作用在体系上的全部力在虚位移上
7、所做的虚功总和为零的条件,导出以广义坐标表示的运动方程。变分法: 通过对表示能量关系的泛函的变分建立方程。根据理论力学中的哈密顿原理或其等价形式的拉格朗日方程导出以广义坐标表示的运动方程。,单自由度体系模型,质量块m,用来表示结构的质量和惯性特性自由度只有一个:水平位移y(t)无重弹簧,刚度为 k,提供结构的弹性恢复力无重阻尼器,阻尼系数c,表示结构的能量耗散,提供结构的阻尼力随时间变化的荷载F(t),第二章 运动方程的建立,单自由度体系运动方程的建立(直接平衡法),建立计算模型,直接平衡法,又称动静法,将动力学问题转化为任一时刻的静力学问题:根据达朗贝尔原理,把惯性力作为附加的虚拟力,并考虑
8、阻尼力、弹性力和作用在结构上的外荷载,使体系处于动力平衡条件,按照静力学中建立平衡方程的思路,直接写出运动方程。,直接平衡法,根据所用平衡方程的不同,直接平衡法又分为刚度法和柔度法。,平衡方程:,根据dAlembert原理:,等于弹簧刚度与位移的乘积:,阻尼力等于阻尼系数与速度的乘积:,由此得到体系的运动方程:,(2-3),惯性力:,弹性力:,阻尼力:,刚度法: 取每一运动质量为隔离体,通过分析所受的全部外力,建立质量各自由度的瞬时力平衡方程,得到体系的运动方程。,平衡方程:,试用刚度法建立图示刚架的运动方程,解,1) 确定自由度数: 横梁刚性,柱子无轴向变形。,2) 确定自由度的位移参数。,
9、3) 质量受力分析:取刚梁为隔离体,确定所受的所有外力!,4) 列动平衡方程:,1个自由度。,其中各力的大小:,位移法:柱子一端产生单位平移时的杆端剪力,等效粘滞阻尼力:,柱端发生平移 y 时产生的梁-柱间剪力:,由此得到体系的运动方程:,惯性力:,弹性力Fs=Fs1+Fs2:,比较:,(2-3),运动方程与(2-3)的形式是一样的!,柔度法,以结构整体为研究对象,通过分析所受的全部外力,利用结构静力分析中计算位移的方法,根据位移协调条件建立体系的运动方程。,例 试用柔度法建立图示简支梁的运动方程,解,1) 确定自由度数: 集中质量,仅竖向位移:,2) 确定自由度的位移参数:质量 m 的位移:
10、,3) 体系受力分析:取梁整体为隔离体,确定所受的所有外力!,1个自由度。,d为自由度方向加单位力所引起的位移,即柔度:,惯性力:,阻尼力:,位移方程:,比较:,含义:等效动荷载直接作用在质量自由度上产生的动位移与 实际动荷载产生的位移相等!,令:,FE(t) 定义为体系的等效动荷载或等效干扰力。其通用表达式,(2-3),已经知道柔度d和刚度k 之间的关系为:,结论:任何一个单自由度体系的运动方程都可以抽象成为一 质量、弹簧、阻尼器体系的运动方程,一般形式为:,2-5 广义单自由度体系:刚体集合,刚体的集合(弹性变形局限于局部弹性元件中)分布弹性(弹性变形在整个结构或某些元件上连续形成)只要可
11、假定只有单一形式的位移,使得结构按照单自由度体系运动,就可以按照单自由度体系进行分析。,1) 确定自由度数: 1个自由度。2) 体系受力分析。,E2-1,令体系产生虚位移:,所有力在虚位移上产生的总虚功:,广义质量:,广义阻尼:,广义刚度:,广义荷载:,简化形式:,令: ,有:,虚位移:,轴向力所做虚功:,考虑轴向力的广义刚度:,讨论:,轴向压力使广义刚度减小,轴向拉力使广义刚度增大,轴向力越大,广义刚度越小;广义刚度为零时:,刚体集合的各部件间有着复杂的关系,但因为约束条件使得两个刚性杆只可能有一种位移形式:所以它是一个真实的单自由度体系。如果杆件可以发生弯曲变形,这时体系将具有无穷多个自由
12、度。如果由假定只能产生单一的变形形式包括有一个合适的产生弯曲变形的部件,那么,这样的体系仍可作为一个单自由度体系来分析。,分布弹性(弹性变形在整个结构或某些元件上连续形成);只要:可假定只有单一形式的位移,使得结构按照单自由度体系运动。,2-6 广义单自由度体系:分布柔性,假定唯一变形曲线后,成为单自由度体系:,广义坐标Z(t),变形曲线y(x):,虚功原理:杆件产生变形时,外力所做的虚功等于内力所做的虚功。,地面运动引起的等效荷载:,外力:轴力N,惯性力,地面运动引起的等效荷载。,惯性力:,外力所做的虚功:,惯性力:,地面运动引起的等效荷载:,轴力:N,关系式:,虚功:,内力所做的虚功:,关
13、系式:,变形,变形速度,令:,令:,E2-3,假定变形曲线:,刚度和质量均匀分布。,运动方程:,考虑轴向力时结构的几何刚度:,综合广义刚度:,临界屈曲荷载:,2-7 广义体系特性的表达式,任意单自由度体系的运动方程:,广义质量的标准形式:,广义阻尼的标准形式:,广义刚度的标准形式:,广义刚度的标准形式(考虑几何刚度):,广义荷载的标准形式:,第三章自由振动反应,表征结构动力响应特性的一些固有量称为结构的动力特性,又称自振特性。,定义,结构的振动反应,结构的动力特性与结构的质量、刚度、阻尼及其分布有关。,定义,结构受外部干扰后发生振动,而在干扰消失后继续振动,这种振动称为结构的自由振动。如果结构
14、在振动过程中不断地受到外部干扰力作用,这种振动称为结构的强迫振动,又称受迫振动 。,结构的自由振动与受迫振动,固有频率,质点在运动过程中完成一个完整的循环所需要的时间称为周期,单位时间内完成的循环次数称为频率。结构在自由振动时的频率称为结构的自振频率或固有频率。对大部分工程结构,结构的自振频率的个数与结构的动力自由度数相等。结构的自振频率与结构的质量和刚度有关。,阻尼,结构在振动过程中的能量耗散作用称为阻尼。结构的自由振动会因为阻尼作用而随时间衰减并最终停止。由于阻尼而使振动衰减的结构系统称为有阻尼系统。阻尼原因复杂:内摩擦、连接摩擦、周围介质阻力等。,3-1 运动方程的解,最简单的由刚体、弹
15、簧和阻尼器组成的单自由度体系. 已经得到单自由度体系的运动方程:,(3-1),这个运动方程也适用于可转换为单自由度体系的任何复杂结构体系的广义坐标反应。,运动方程:,等效动荷载为零的情况下的振动称为自由振动。,定义,自由振动产生的原因:初始时刻的干扰! 初始位移;初始速度;初始位移+初始速度,结构受外部干扰后发生振动,而在干扰消失后继续振动,这种振动称为结构的自由振动。,去掉外荷载,p(t)=0!,上式称为(二阶线性常系数)齐次方程;,齐次方程的求解:,可设齐次方程解的形式为:,(3-3),其特征方程为:,或:,代入(3-2)可得:,(3-4),(3-2)称为(二阶线性常系数)齐次方程;,式中
16、w2=k/m,w是体系振动的圆频率。根据阻尼系数c 值的不同,解出的特征参数s 值将具有不同的特性。,(3-2),3-2 无阻尼自由振动,If c=0:,特征方程:,自由振动方程:,(3-7),引入Euler方程:,代入(3-2)得:,(3-9),A和B是由初始条件决定的常数。,得无阻尼自由振动的位移反应:,(3-10),(3-2),设t=0时:,代入:,代入:,单自由度无阻尼体系运动方程的解:,(3-11),或写成:,(3-14),位移反应:,(3-10),三角关系:,对比(3-11),显然有:,(3-13)成为:,(3-11),(3-14),物理意义:,(3-11),(3-14),物理意义
17、:,(3-11),定义,对于无阻尼体系,运动完全是反复进行的。运动的最大位移称为振幅。,运动完成一个完整循环所需时间称为自振周期,由于对应每个角增量 2p 便发生一个完整循环,自振周期就是:,单位时间内的循环次数称为自振频率:,运动的角速度称为自振圆频率:,3-3 阻尼自由振动,对于有阻尼的单自由度体系,特征方程:,自由振动方程:, 则:,随着根号中值的符号的不同,这个表达式可以描述临界阻尼、低阻尼和超阻尼三种体系的运动型式。本课程只讲临界阻尼和低阻尼两种情况。,(3-2),1.临界阻尼,当根式中的值为零时,对应的阻尼值称为临界阻尼,记作cc。显然,应有cc/2m=w,即:,特征方程:,这时,
18、对应的s 值为 :,自由振动方程:,临界阻尼自由振动方程的解为:,(3-19),(3-20),(3-2),由初始条件:,得到临界阻尼体系反应的最终形式:,临界阻尼位移解:,临界阻尼体系反应不是简谐振动,体系的位移反应从开始时的,依照指数规律衰减,回复到零点。,临界阻尼的物理意义是:在自由振动反应中不出现震荡所需要的最小阻尼值。,速度,(3-20),2.低阻尼,特征方程:,自由振动方程:,如果体系的阻尼比临界阻尼小,则显然有c/2mw ,这时,特征方程根式中的值必然为负值,则s 值成为:,引入符号:,其中x 表示体系阻尼与临界阻尼的比值,称为阻尼比,则:,(3-2),成为:,引入Euler方程:
19、,引入符号:,其中wd 称为有阻尼振动频率。,则,利用初始条件:,得到低阻尼体系动力反应的最终形式:,(3-25),写成矢量表达式:,运动的振幅(矢量的模)和初相位分别为:,(3-27),低阻尼体系动力反应:,物理意义:,低阻尼体系的自由振动具有不变的圆频率wd ,并围绕中心位置振荡,而其振幅则随时间呈指数e-xwt 衰减。如果反应的时间足够长,最终会衰减到零。,2.超阻尼体系,特征方程:,自由振动方程:,如果体系的阻尼比临界阻尼大,则显然有c/2mw ,这时,特征方程根式中的值为正值,则s 值成为:,(3-2),(3-38),超阻尼体系反应不是震荡的,体系的位移反应从开始时的,依照双曲函数规
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 动力学 概述 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1438012.html