经典的傅里叶变换(下) 一般人都能看明白ppt课件.pptx
《经典的傅里叶变换(下) 一般人都能看明白ppt课件.pptx》由会员分享,可在线阅读,更多相关《经典的傅里叶变换(下) 一般人都能看明白ppt课件.pptx(25页珍藏版)》请在三一办公上搜索。
1、傅里叶变换(下),孔 孔 出品,上次的关键词是:从侧面看。这次的关键词是:从下面看。在第二课最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。先说一个最直接的用途。无论听广播还是看电视,我们一定对一个词不陌生频道。频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。下面大家尝试一件事:先在纸上画一个sin(x),不一定标准,意思差不多就行。不是很难吧。好,接下去画一个sin(3x)+sin(5x)的图形。别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?,好,画不出来不要紧,我
2、把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。这基本是不可能做到的。但是在频域呢?则简单的很,无非就是几条竖线而已。所以很多在时域看似不可能做到的数学操作,在频域相反很容易。这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。再说一个更重要,但是稍微复杂一点的用途求解微分方程。(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。各行各业都用的到。但是求解微分方程却是一件相当麻烦的事情。
3、因为除了要计算加减乘除,还要计算微分积分。而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。,下面我们继续说相位谱:通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。基础的正弦波A.sin(wt+)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。,鉴于
4、正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。在图中就是那些小红点。小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。当然,这些粉色的点只标注了波峰距离频率轴的距离,并不是相位。,这里需要纠正一个概念:时间差并不是相位差。如果将全部周期看作2或者360度的话,相位差则是时间差在一个周期中所占的比例。我们将时间差除周期再乘2,就得到了相位差。在完整的立体图中,我们将投影得到的时间差依次除以所在频率的周期,就得到了最下面的相位谱。所以,频谱是从侧面看,相位谱是从下面看。下次偷看女生裙底被发现的话,可
5、以告诉她:“对不起,我只是想看看你的相位谱。”注意到,相位谱中的相位除了0,就是Pi。因为cos(t+ )=-cos(t),所以实际上相位为Pi的波只是上下翻转了而已。对于周期方波的傅里叶级数,这样的相位谱已经是很简单的了。另外值得注意的是,由于cos(t+2)=cos(t),所以相位差是周期的, 和3 ,5 ,7 都是相同的相位。人为定义相位谱的值域为(- , ,所以图中的相位差均为 。,往昔连续非周期,回忆周期不连续,任你ZT、DFT,还原不回去。在这个世界上,有的事情一期一会,永不再来,并且时间始终不曾停息地将那些刻骨铭心的往昔连续的标记在时间点上。但是这些事情往往又成为了我们格外宝贵的
6、回忆,在我们大脑里隔一段时间就会周期性的蹦出来一下,可惜这些回忆都是零散的片段,往往只有最幸福的回忆,而平淡的回忆则逐渐被我们忘却。因为,往昔是一个连续的非周期信号,而回忆是一个周期离散信号。是否有一种数学工具将连续非周期信号变换为周期离散信号呢?抱歉,真没有。比如傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。这句话比较绕嘴,实在看着费事可以干脆回忆第一章的图片。,而在我们接下去要讲的傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。算了,还是上一张图方便大家理解吧:或者我们也可以换一个角度理解:傅里叶变换实际上是对一个周期无限大的函数进
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典的傅里叶变换下 一般人都能看明白ppt课件 经典 傅里叶变换 一般人 都能看 明白 ppt 课件

链接地址:https://www.31ppt.com/p-1437955.html