经典流体力学ppt课件上海交大.ppt
《经典流体力学ppt课件上海交大.ppt》由会员分享,可在线阅读,更多相关《经典流体力学ppt课件上海交大.ppt(325页珍藏版)》请在三一办公上搜索。
1、流体力学,流体力学,第一章 绪论,第二章 流体静力学,第三章 流体动力学,第四章 相似和量纲分析,第五章 管 中 流 动,第六章 孔口和缝隙流动,第七章 气体的一元流动,第一章 绪论,1-1 流体力学研究的内容和方法,1-2 流体的概念及其模型化,1-3 流体的主要物理性质,第二章 流体静力学,2-1 平衡流体上的作用力,2-2 流体的平衡微分方程,2-3 重力场中的平衡流体,2-4 静 压 强 的 计 算,2-5 平衡流体对壁面的作用力,2-6 液 体 的 相 对 平 衡,第三章 流体动力学,3-1 描述流体运动的两种方法,3-2 流体运动中的一些基本概念,3-3 连 续 方 程 式,3-4
2、 理想流体的运动微分方程,3-5 伯 努 利 方 程 及 其 应 用,3-6 动 量 方 程 及 其 应 用,第四章 相似和量纲分析,4 -2 定 理 和 量 纲 分 析 的 应 用,4 1 相 似 原 理,第五章 管中流动,5-1 雷诺实验,5-2 圆管中的层流,5-3 圆管中的湍流, 5-4 管道中的局部阻力,第六章 孔口和缝隙流动,第七章 气体的一元流动,81 声速和马赫数,82 一元气流的基本方程和流动特性,83 理想气体一元等熵流动的特征,84 收缩喷管与拉伐尔喷管的计算,第一章 绪 论,流体力学研究的主要内容: 1、建立描述流体平衡和运动规律的基本方程; 2、确定流体流经各种通道时
3、速度、压强的分布 规律; 3、探求流体运动中的能量转换及各种能量损失 的计算方法; 4、解决流体与限制其流动的固体壁面间的相互 作用力。,1-1 流体力学研究的内容和方法,流体力学的研究方法: 1、较严密的数学推理; 2、实验研究; 3、数值计算。,1-2 流体的概念及其模型化一、流体的物质属性1、流体与固体,流体:可承受压力,几乎不可承受拉力,承受剪 切力的能力极弱。易流性 在极小剪切力的作用下,流体就将产生无休止的(连续的)剪切变形(流动),直到剪切力消失为止。 流体没有一定的形状。固体具有一定的形状。,固体:既可承受压力,又可承受拉力和剪切力,在一定范围内变形将随外力的消失而消失。,2、
4、液体和气体 气体远比液体具有更大的流动性。 气体在外力作用下表现出很大的可压缩性。,二、流体质点的概念及连续介质模型 流体质点 流体中由大量流体分子组成的,宏观尺度非常小,而微观尺度又足够大的物理实体。(具有宏观物理量 、T、p、v 等),连续介质模型 流体是由无穷多个,无穷小的,彼此紧密毗邻、连续不断的流体质点所组成的一种绝无间隙的连续介质。,1-3 流体的主要物理性质,一、密度 lim M kg/m3 V0 V 流体密度是空间位置 和时间的函数。,V. M P ( x,y, z ),z,x,y,P =,kg/m3,对于均质流体:,二、压缩性可压缩性 流体随其所受压强的变化而发生 体积(密度
5、)变化的性质。,( m2/N ),式中:dV 流体体积相对于V 的增量; V 压强变化前(为 p 时)的流体体积; dp 压强相对于p 的增量。,体积压缩率(体积压缩系数):,K 不易压缩。一般认为:液体是不可压缩的(在 p、T、v 变 化不大的“静态”情况下)。 则 = 常数,体积(弹性)模量:,或:,( N/m2 ),三、液体的粘性1、粘性的概念及牛顿内摩擦定律,流体分子间的内聚力流体分子与固体壁面间的附着力。内摩擦力 相邻流层间,平行于流层表面的相互作用力。,定义:流体在运动时,其内部相邻流层间要产 生抵抗相对滑动(抵抗变形)的内摩擦力的性质称为流体的粘性。,y,x,v。,v+dvv,y
6、,dy,v0,F,内摩擦力: 以切应力表示: 式中: 与流体的种类及其温度有关的比例 常数; 速度梯度(流体流速在其法线方 向上的变化率)。,牛顿内摩擦定律,2、粘度及其表示方法粘度 代表了粘性的大小 的物理意义:产生单位速度梯度,相邻流层在单位面积上所作用的内摩擦力(切应力)的大小。,常用粘度表示方法有三种:动力粘度 单位 : Pa s (帕 秒) 1 Pa s = 1 N/m2 s,相对粘度 其它流体相对于水的粘度 恩氏粘度:E 中、俄、德使用 赛氏粘度 : SSU 美国使用 雷氏粘度: R 英国使用 巴氏粘度: B 法国使用 用不同的粘度计测定,运动粘度: 单位:m2 / s 工程上常用
7、:10 6 m2 / s (厘斯) mm2 / s,油液的牌号:摄氏 40C 时油液运动粘度的平均厘斯( mm2 /s )值。,3、粘压关系和粘温关系1粘压关系 压强其分子间距离(被压缩)内聚力粘度 一般不考虑压强变化对粘度的影响。2粘温关系(对于液体) 温度内聚力 粘度 温度变化时对流体粘度的影响必须给于重视。,4、理想流体的概念理想流体假想的没有粘性的流体。 = 0 = 0实际流体事实上具有粘性的流体。,小 结,1、流体力学的任务是研究流体的平衡与宏观机械运动规律。,2、引入流体质点和流体的连续介质模型假设,把流体看成没有间隙 的连续介质,则流体的一切物理量都可看作时空的连续函数,可 采用
8、连续函数理论作为分析工具。,3、流体的压缩性,一般可用体积压缩系数 k 和体积模量 K 来描述。 在压强变化不大时,液体可视为不可压缩流体。,4、粘性是流体最重要的物理性质。它是流体运动时产生内摩擦力, 抵抗剪切变形的一种性质。不同流体粘性的大小用动力粘度 或 运动粘度 来反映。温度是影响粘度的主要因素,随着温度升高, 液体的粘度下降。理想流体是忽略粘性的假想流体。,应重点理解和掌握的主要概念有:流体质点、流体的连续介质模型、粘性、粘度、粘温关系、理想流体。流体区别于固体的特性。还应熟练掌握牛顿内摩擦定律及其应用。,第二章 流体静力学,平衡(静止),绝对平衡 流体整体对于地球无相对运动。 相对
9、平衡 流体整体对于地球有相对运动,但流体质点间无相对运动。,平衡流体内不显示粘性,所以不存在切应力 。,2-1 平衡流体上的作用力一、质量力质量力 与流体的质量有关,作用在某一体积 流体的所有质点上的力。(如重力、惯性力),fx 、fy、fz 单位质量力在直角坐标系中 x、y、 z 轴上的投影。,单位质量力 单位质量流体所受到的质量力。, 单位质量力(数值等于流体加速度)。,二、表面力表面力 由于V 流体与四周包围它的物体相 接触而产生,分布作用在该体积流体的表面。单位面积上的表面力(应力):法向分量 lim Fn A0 A 压强 KPa, MPa,=,pP,归纳两点:1、平衡流体内不存在切向
10、应力,表面力即为 法向应力(即静压强);2、绝对平衡流体所受质量力只有重力,相对 平衡流体可能受各种质量力的作用。,三、 流体静压强的两个重要特性。1、流体静压强的方向总是沿着作用面的内法线方向。2、平衡流体内任一点处的静压强的数值与其作用面的方向无关,它只是该点空间坐标的函数。证明:在平衡流体中取出一微小四面体ABOC,考察其在外力作用下的平衡条件。,表面力,各个面上的静压力,ABC 斜面面积,质量力若,则:,质量力在三个坐标方向上的投影, x 方向上的力平衡方程式(Fx= 0)px1/2dydz pn ABCcos(n,x) + 1/6dxdydz fx = 0因ABCcos(n,x) =
11、 1/2dydz (ABC在yoz平面上 的投影)则: 1/2dydz ( px pn ) + /6dxdydz fx = 0 略去三阶微量 dxdydz.可得: px = pn,同理: 在 y 方向上有 py = pn 在 z 方向上有 pz = pn则有: px = py = pz = pn即:平衡流体中某点处所受的静压强是各向同 性的。 静压强是一个标量。其大小由该点所处的空间位置决定。 p = p ( x、y、z ),2-2 流体的平衡微分方程(欧拉平衡微分方程)平衡规律:在静止条件下,流体受到的静压力与 质量力相平衡。,平衡微分方程的推导:从平衡流体中取出一微小正平行六面体微团。,体
12、积:,分析微小正平行六面体微团受力:,一、质量力dFmx = dxdydz fxdFmy = dxdydz fydFmz = dxdydz fz,二、表面力先讨论沿 x 轴方向的表面力。形心A( x、y、z ) 处的静压强为pA( x、y、z )距A点 x 轴方向上 1/2dx 处的前、后两个面上的表面力分别为:,三、平衡微分方程沿 x 轴方向有 Fx = 0即:化简整理后,将方程两边同除以微小六面体的质量 dxdydz,得:,静止流体的平衡微分方程 (欧拉平衡微分方程),方程的物理意义 : 在静止流体中,作用在单位质量流体上的质量力与作用在该流体表面上的压力相平衡。,同理:,四、综合表达式将
13、平衡微分方程的三个表达式分别乘以dx、dy、dz 然后相加得:,静压强的全微分,此式便于积分。对于各种不同质量力作用下流体内的压强分布规律,均可由它积分得到。,则:, 欧拉平衡微分方程的综合表达式,五、质量力的势函数,对于不可压缩流体, =常数。令p/ = w,因 p = p ( x, y, z ),则: w = w ( x, y, z )由综合式有:d (p/) = fxdx + fydy + fzdz = dw = (w/x)dx + (w/y)dy + (w/z)dz,则有 : fx= (w/x), fy= (w/y), fz= (w/z),由于坐标函数 w ( x, y, z )与质量
14、力之间存在着上述关系,则称函数 w 为质量力的势函数,这样的质量力称为有势质量力。,2-3 重力场中的平衡流体讨论重力作用下,不可压缩平衡流体的压强分布规律。一、静压强基本公式(方程) 对于如图所示容器中的流体,单位质量 流体所受质量力在各坐标方向上的分量为:,将上述结果代入欧拉平衡微分方程的综合表达式得: 移项后得:,对于均质的不可压缩流体, = 常数积分上式,则: 式中:C为积分常数, 重力作用下、连续、均质、不可压缩流体 的静压强基本公式(静力学基本方程)。,如图若 1、2 两点是流体中的任意两点,则上式可写成 :,或:,二、静压强分布规律 取流体中任意一点 A,考察该点处静压强。对A点
15、和液面上的一点C列写出静压强基本公式: 或 gz + p = gz0 + p0 整理得:p = p0 + g( z0 z ) = p0 + gh 式中:h A点处的液深 。 上式表示了不可压缩均质流体在重力作用下的压强分布规律,是流体静力学中最常用的公式。,静压强分布规律,对公式的几点说明:1、任意一点的静压强由两部分组成:液面压强 p0 和液重产生的压强 gh;2、任意点处的压强都包含了液面压强(帕斯卡原理);3、h p , 呈直线规律分布;4、距液面深度相同各点处的压强均相等。等压面为一簇水平面。,三、静压强基本公式的物理意义 mgz 位置势能z 单位重力流体对某一基准面的位置势能(位置水
16、头)。,所以:,物理意义:重力作用下,静止流体中任意点处单位重力流体的位置势能与压强势能之和(总势能)为一常数。,对静止流体中的 A、B 两点列静压强基本公式可得, 单位重力流体的压强势能(压强水头),24 静压强的计算一、静压强的计算标准(表示方法) 绝对压强 以绝对零值(绝对真空)为计算标准,所表示的压强。 计示压强(相对压强、表压强) 以当地大气压为计算标准,所表示的压强。 真空度以当地大气压为计算基准,小于大气压的部分。,三者之间的关系如图 或归纳如下: 绝对压强=大气压强 + 计示压强 计示压强= 绝对压强 大气压强 真空度=大气压强 绝对压强,二、静压强的计量单位1、应力单位:Pa
17、 (N/m2), KPa, MPa(法定计 量单位),2、液柱高单位 :,国外:bar (巴) 1 bar = 105 Pa psi (巴斯) 1 psi = 6.89 KPa,m H2O , mm Hg 等,用不同介质的液柱高表示压强时的换算关系:,三、压强的测量,金属式压力表 机械式,压力传感器 电测法,液柱式测压计 基于以静压强基本公式,2-5 平衡流体对固体壁面的作用力讨论质量力仅为重力时平衡流体对壁面的作用力。一、固体平面壁上的作用力 (大小、方向、作用点)考察平面壁AB上的作用力。建立坐标 lom如图。,1、平板上的作用力(大小)微元面积dA上的压强:p = p0 + gh微元面积
18、dA上的微小作用力为dFdF = ( p0 + gh ) dA = ( p0 + glsin ) dA,整个平板AB上的作用力 F 应为:F = AdF = A p0dA + + A g l sin dA = p0A +g sin AldA式中: AldA = lCA 面积矩定理式中:lC 平面A形心C点的 l 轴坐标。,则 F = p0A + g sin lC A = ( p0 + ghc )A = pCA式中: hC 平面A形心C处的液深; pC C点处的压强。,上式表明:重力作用下,静止液体对平面壁的作 用力等于平面形心处的静压强与平面面积的乘积。,2、压力中心(压力作用点)因 F lD
19、 = A l dF式中:lD 平面A压力中心D点的 l 轴坐标。将 F 和 dF 的表达式代入上式得:( p0 + ghc)A lD = A ( p0 + g l sin ) l dA,Im 平面A对m轴的惯性矩; ICm 平面A对通过其形心C并与m轴平行的 C C 轴的惯性矩 ( 典型平面的ICm值可查表获 得)。,若 p0 = 0 (液面为大气压) , 则可得到很简单的形式:可见总有: lD lC , 二者之间的距离为,压力中心D(作用点)液深 :,若平面A关于 l 轴不是对称的,尚需求出点D的m轴坐标,才能确定压力中心D的位置 则 D( mD , lD ) 式中: Iml 平面A对m轴和
20、 l 轴的惯性积。,二、曲面壁上的作用力 讨论如图所示的二维曲面(柱面)上的静止液体的作用力F。 设有一个承受液体压力的二维曲面ab,其面积为A,曲面在 xoz 坐标平面上的投影为曲线 ab。液深为h 处的微小曲面积 dA上的液体微小作用力为dF。 dF = ( p0 + gh ) dA,1、作用力的水平分力为Fx 微小水平分力为: dFx = dF cos = ( p0 + gh ) dA cos = ( p0 + gh ) dAx 式中:dAx 微小曲面积 dA 在 x 轴方向 (或 yoz 坐标平面)上的投影面积。,则 Fx = AxdFx = Ax ( p0 + gh)dAx = p0
21、Ax + g Ax h dAx式中: Ax hdAx = hCAx 曲面A在 yoz 平面上的 投影面积 Ax 对 y 轴的面积矩 。 hC 投影面积Ax形心处C的液深。,所以:Fx = p0Ax + ghC Ax = ( p0 + ghC)Ax 作用力的水平分力,2、作用力的垂直分力Fz 微小垂直分力为:dFz = dFsin = ( p0 + gh)dA sin = ( p0+gh)dAz式中:dAz 微小曲面积 dA 在 z 方向上 的投影面积。,则: Fz = AzdFz = Az ( p0 + gh)dAz = p0Az + g Azh dAz显然,式中:Az hdAz = VF 曲
22、面ab上方的 液体体积,称为压力体。,液体对曲面的作用力:,所以: Fz = p0Az + gVF 作用力的垂直分力, F 的方向与垂直方向的夹角。,F 的作用方向:,三、压力体的概念 积分式 Azh dAz 纯几何体积。定义:由所研究的曲面A,通过曲面A的周界(外缘)所作的垂直柱面,以及对曲面A有作用的液体自由液面(或其延伸面)所围成的封闭体积,用VF表示,称为压力体。,压力体液重: gVF,实压力体 压力体与受压面同侧。虚压力体 压力体与受压面异侧。,例题:某水坝用一长方形闸门封住放水口。闸门 高 L = 3 m ,宽 B = 4 m ,闸门两边水位分别为 H1= 5 m ,H2 = 2
23、m ,闸门垂直放置,试确定: 1、开启闸门时绳索的拉力(绳索与水平面的夹 角为 60 ); 2、关闭闸门时 A 点处的支承力。,解:1、作用在闸门右侧的总压力为:,总压力 F1 的作用点:,作用在闸门左侧的总压力为:,总压力 F2 的作用点:,将闸门两侧的水压力及绳索拉力对转轴 O 点取矩,应有:,即:,求得绳索的拉力 T = 348.9 KN,2、,即:,解得: FA = 174.4 KN,例题 ( 习题 2 32 ) : 求封闭液体关闭闸门所需 的力 F 。,解:设液体对弧形闸门(以 R 为半径的四分之一 圆柱面)的总压力为 P 。其垂直指向圆柱面, 且作用线通过圆柱曲面的曲率中心。则应有
24、:F R = P l上式中:l = R sin P 对铰点 O 的力臂 P 的作用线与垂直方向的夹角,需求出,1、首先求出容器液面压强 p0 由 U 形管差压计知:,2、由 Px = pc Ax,得:,3、,4、,5、,6、,7、,例题:一圆柱形压力水罐(压力容器)。半径 R = 0.5 m,长 l = 2 m,压力表读数 pM = 23.72 KPa。试求:1、两端部平面盖板所受的水压力; 2、上、下半圆筒所受的水压力。,解:1、端盖板所受的水压力,2、上、下半圆筒所受的水压力,或:压力表用测压管代替时,相对平衡流体所受的质量力:重力 惯性力,2-6 液体的相对平衡,除了重力场中的流体平衡问
25、题以外,还有一种在工程上常见的所谓液体相对平衡问题:液体质点彼此之间固然没有相对运动,但盛装液体的容器或机件却对地面上的固定坐标系有相对运动。如果我们把运动坐标取在容器或机件上,则对于这种所谓的非惯性坐标系来说,液体就成为相对平衡了。,工程上常见的流体的相对平衡有两种: 1、作匀加速直线运动容器中的液体; 2、作等角速旋转运动容器中的液体。,讨论作等角速旋转运动容器内液体的相对平衡。,如图,盛有液体的圆柱形容器绕铅垂轴 z 以角速度作旋转运动,液体被甩向外周。 当旋转角速度稳定不变时,液体形成如图所示的自由表面,液体质点之间不再有相对运动,液体连同容器作整体回转。如果将运动坐标系固结在回转容器
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 流体力学 ppt 课件 上海交大
链接地址:https://www.31ppt.com/p-1434907.html