第六章 联合概率数据关联算法和多假设滤波器ppt课件.pptx
《第六章 联合概率数据关联算法和多假设滤波器ppt课件.pptx》由会员分享,可在线阅读,更多相关《第六章 联合概率数据关联算法和多假设滤波器ppt课件.pptx(48页珍藏版)》请在三一办公上搜索。
1、第六章,联合概率数据关联和多假设滤波器,联合概率数据关联算法和多假设方法被认为是在多目标跟踪领域最有效的两种关联方法。多假设跟踪方法考虑回波来源于目标、杂波和新目标等各种可能的情况。联合概率数据关联算法是多假设方法的一个特例,避免了“最邻近”方法“唯一性”可能造成的关联出错,能够较好的适应密集环境下的多目标跟踪。,2,6.1 联合概率数据关联算法,6.1.1 联合概率数据关联算法的基本思想联合概率数据关联算法是在仅适用于与单目标跟踪的概率数据关联算法(PDA)的基础上,提出的适用于多目标跟踪情形的一种数据关联算法。,3,1. 模型 假设在杂波环境中已有T个目标,则它们的状态方程和测量方程分别表
2、示为:,其中: Xt(k)k时刻目标t的状态向量; 初值Xt(0)是均值 为 、协方差矩阵为 的随机 向量,且独立于Wt(k); Ft(k)目标t的状态转移矩阵;,4,Wt(k)状态噪声,其均值为零的高斯白噪声,有协方差矩阵 EWt(k)(Wt(l)T=Qt(k)k,lH(k)测量矩阵;V(k)测量噪声,其均值为零的高斯白噪声,有协方差矩阵 EVt(k)(Vt(l)T=Rt(k)k,l,如果被跟踪的目标的关联门均不相交,或者没有回波处于相交区域,则多目标跟踪问题就可简化为多目标环境中的单目标跟踪问题。,5,2. 确认矩阵的建立为了表示有效回波和个目标跟踪门的复杂关系,引入了确认矩阵的概念。当且
3、仅当回波落入某目标关联区内,它才被认为是有效回波,否则被拒绝。实际上,只有落入关联门内的回波,被认为是有效回波。这样,我们就可以得到包括mk个有效回波,n个目标的有效矩阵或称确认矩阵。确认矩阵被定义为彼此相交的跟踪门的最大集合,表示为,(6-1),6,其结构如下:,其中:jt表明第j个有效测量是否位于目标t的跟踪门内。t=0时,表明“没有目标”,相应的矩阵中t=0对应的一列元素全部为1,每一个测量都可能来自于噪声、干扰或杂波相消剩余。,矩阵中其余元素:,当jt=1时,k时刻有效回波Zkj落入确认门Atk;当jt=0时,k时刻有效回波Zkj没落入确认门Atk。其中,j=1,2,mk;t=1,2,
4、n。,7,图1中目标数n=3,有效回波数mk=4,确认矩阵为:,第一个目标确认门内有两个有效回波Zk1,Zk2;第二个确认门内也有两个有效回波Zk2,Zk3;第三个确认门有一个有效回波Zk4,故11=1, 21=1, 22=1, 32=1, 43=1, 其余为0。,对于量测落入跟踪门相交区域的情形,对应某些量测可能源于多个目标,联合概率数据关联的目的就是计算每一个量测与其可能的各种源目标相关联的概率。,8,3.联合关联事件和联合关联概率 为了进行状态估计,首先要解决mk个有效回波与n个目标配对的问题,即数据关联。JPDA算法的基本思想在于认为落入目标t的跟踪门内的有效回波都有可能来自目标t,只
5、是其关联概率不同。,9,首先定义关联事件jt有效测量Zj(k)来自目标t j=1, 2, , mk; t=1, 2, , n 当t=0时,j0表示测量Zj(k)来自杂波或噪声的事件。记关联事件的后验概率为,称jt为关联概率,它是各关联事件出现可能性的度量。Zk表示全部有效回波的集合。,10,根据全概率公式,有,其中, 表示在时刻k利用卡尔曼滤波对目标t的状态估计。上式表明,k时刻目标t的状态估计 是其关联门内各个有效回波mk以相应的关联概率分别对目标t的状态估计的加权和。,11,现定义联合关联事件,表示第i个联合事件,它表示mk个量测源的一种可能。,12,联合关联事件i(k)可以表示成矩阵形式
6、:,其中,表示在联合事件中,量测j是否源于目标t。,13,满足以下两个条件的联合关联事件定义为可行事件: (1) 每个测量只能源于一个源、 目标或杂波, 即,j=1, 2, , mk,(2) 每个目标最多只能产生一个回波,即,t=1, 2, , n,t(i(k) )称为目标检测指示器,它表明事件i(k)中是否 有测量与目标t关联,即目标是否被检测到。,14,同样可以定义一个测量关联指示器,j=1, 2, , mk,根据以上定义,联合事件i(k)中未被关联的测量,即杂波的数目为:,它表明联合事件i(k)中的测量j是否与一个真实的目标关联。,15,可行事件i(k)对应的矩阵 称为可行矩阵,由以上关
7、于可能联合事件的讨论可以看出,它可以通过对确认矩阵拆分的方法得到:对确认矩阵进行逐行扫描,每行仅选出一个1作为可行矩阵在该行的唯一非零元素。即满足每个量测有唯一的源。除第一列之外,可行矩阵中每列只能有一个1。即每个目标最多有一个量测以其为源。,16,例如:,如图所示的最简单的多目标跟踪的例子:目标数n=2,有效回波数mk=3所对应的确认矩阵为:,根据以上确认矩阵的拆分原则,对其进行拆分,可以得到8个可行矩阵以及每个可行矩阵多对应的可行事件。,17,(1),(2),18,(3),(4),19,(5),(6),20,(7),(8),21,通过以上拆分,共得到了8个可行的联合事件。由这8个可行的联合
8、事件的组成,进而可以得到每一个量测与目标关联的事件:第一个量测与第一个目标关联的事件为:第一个量测不能与第二个目标关联。第二个量测与第一个目标关联的事件为:第二个量测与第二个目标关联的事件为:第三个量测与第二个目标关联的事件为:,可行矩阵和可行联合事件是对应的。实际中一般通过拆分确认矩阵得到的可行矩阵来确定可行联合事件。,22,6.1.3 联合事件的概率计算,在k时刻联合事件的条件概率:,其中c为归一化常数。Bar-Shalom已经证明,对泊松分布杂波模型:,23,其中, c为新归一化因子。,对均匀分布的杂波模型:,式中,,为均值为Ztj(k/k-1),方差为Stj(k)的高斯分布。,24,最
9、后有关联概率:,j=1, 2, , mk; t=1, 2, ,T,没有一个有效测量源于目标t的概率:,给定初始值 ,Pt(0/0), t=1,2, , n, 递推公式 由k=1开始;,(3) 回波预测,根据上面的结果, 我们最后得到JPDA算法的流程如下:,(4) 预测协方差矩阵,Pt(k/k-1)=Ft(k-1)Pt(k-1/k-1)Ft(k-1)T+Qt(k-1),25,(2) 预测状态,(5) 预测新息向量,(7) 根据有效回波集合,生成确认矩阵,其中,j=1, 2, , mk; t=1, 2, , n,(8) 由确认矩阵生成可行联合事件i,i=1,2,, L,L为可 行联合事件总和;,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六章 联合概率数据关联算法和多假设滤波器ppt课件 第六 联合 概率 数据 关联 算法 假设 滤波器 ppt 课件
链接地址:https://www.31ppt.com/p-1434156.html