《用MATLAB求解非线性规划ppt课件.ppt》由会员分享,可在线阅读,更多相关《用MATLAB求解非线性规划ppt课件.ppt(23页珍藏版)》请在三一办公上搜索。
1、用MATLAB软件求解,其输入格式如下: 1.x=quadprog(H,C,A,b); 2.x=quadprog(H,C,A,b,Aeq,beq); 3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); 4.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); 5.x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); 6.x,fval=quaprog(.); 7.x,fval,exitflag=quaprog(.); 8.x,fval,exitflag,output=quaprog(.);,1、
2、二次规划,用MATLAB求解非线性规划,例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t. x1+x22 -x1+2x22 x10, x20,1、写成标准形式:,2、 输入命令: H=1 -1; -1 2; c=-2 ;-6;A=1 1; -1 2;b=2;2; Aeq=;beq=; VLB=0;0;VUB=; x,z=quadprog(H,c,A,b,Aeq,beq,VLB,VUB),3、运算结果为: x =0.6667 1.3333 z = -8.2222,s.t.,1. 首先建立M文件fun.m,定义目标函数F(X):function f=fun(X
3、);f=F(X);,2、一般非线性规划,其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:,3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下: (1) x=fmincon(fun,X0,A,b) (2) x=fmincon(fun,X0,A,b,Aeq,beq) (3) x=fmincon(fun,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon)(5)x=fminc
4、on(fun,X0,A,b,Aeq,beq,VLB,VUB,nonlcon,options) (6) x,fval= fmincon(.) (7) x,fval,exitflag= fmincon(.) (8)x,fval,exitflag,output= fmincon(.),输出极值点,M文件,迭代的初值,参数说明,变量上下限,注意:1 fmincon函数提供了大型优化算法和中型优化算法。默认时,若在fun函数中提供了梯度(options参数的GradObj设置为on),并且只有上下界存在或只有等式约束,fmincon函数将选择大型算法。当既有等式约束又有梯度约束时,使用中型算法。2 fm
5、incon函数的中型算法使用的是序列二次规划法。在每一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日Hessian矩阵。3 fmincon函数可能会给出局部最优解,这与初值X0的选取有关。,1、写成标准形式: s.t.,2x1+3x2 6 s.t x1+4x2 5 x1,x2 0,例2,2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)2+(1/2)*x(2)2,3、再建立主程序youh2.m: x0=1;1; A=2 3 ;1 4; b=6;5; Aeq=;beq=; VLB=0;0; VUB=; x,fva
6、l=fmincon(fun3,x0,A,b,Aeq,beq,VLB,VUB),4、运算结果为: x = 0.7647 1.0588 fval = -2.0294,1先建立M文件 fun4.m,定义目标函数: function f=fun4(x); f=exp(x(1) *(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);,x1+x2=0 s.t. 1.5+x1x2 - x1 - x2 0 -x1x2 10 0,例3,2再建立M文件mycon.m定义非线性约束: function g,ceq=mycon(x) g=x(1)+x(2);1.5+x(1)*x(2)-x(1
7、)-x(2);-x(1)*x(2)-10;,3主程序youh3.m为:x0=-1;1;A=;b=;Aeq=1 1;beq=0;vlb=;vub=;x,fval=fmincon(fun4,x0,A,b,Aeq,beq,vlb,vub,mycon),3. 运算结果为: x = -1.2250 1.2250 fval = 1.8951,例4,1先建立M-文件fun.m定义目标函数: function f=fun(x); f=-2*x(1)-x(2);,2再建立M文件mycon2.m定义非线性约束: function g,ceq=mycon2(x) g=x(1)2+x(2)2-25;x(1)2-x(2
8、)2-7;,3. 主程序fxx.m为: x0=3;2.5; VLB=0 0;VUB=5 10; x,fval,exitflag,output =fmincon(fun,x0,VLB,VUB,mycon2),4. 运算结果为: x = 4.0000 3.0000fval =-11.0000exitflag = 1output = iterations: 4 funcCount: 17 stepsize: 1 algorithm: 1x44 char firstorderopt: cgiterations: ,应用实例: 供应与选址,某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系a,b表
9、示,距离单位:千米 )及水泥日用量d(吨)由下表给出。目前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从料场到工地之间均有直线道路相连。 (1)试制定每天的供应计划,即从A,B两料场分别向各工地运送多少吨水泥,使总的吨千米数最小。 (2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?,(一)、建立模型,记工地的位置为(ai,bi),水泥日用量为di,i=1,6;料场位置为(xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。,当用临时料场时决策变量为:Xij,当不用临时料场时决策变
10、量为:Xij,xj,yj。,(二)使用临时料场的情形,使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量为Xij,在各工地用量必须满足和各料场运送量不超过日储量的条件下,使总的吨千米数最小,这是线性规划问题. 线性规划模型为:,设X11=X1, X21= X 2, X31= X 3, X41= X 4, X51= X 5, X61= X 6X12= X 7, X22= X 8, X32= X 9, X42= X 10, X52= X 11, X62= X 12 编写程序gying1.m:,cleara=1.25 8.75 0.5 5.75 3 7.25;b=1.25 0.7
11、5 4.75 5 6.5 7.75;d=3 5 4 7 6 11;x=5 2;y=1 7;e=20 20;for i=1:6 for j=1:2 aa(i,j)=sqrt(x(j)-a(i)2+(y(j)-b(i)2); endendCC=aa(:,1); aa(:,2);A=1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;,B=20;20;Aeq=1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
12、0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 ;beq=d(1);d(2);d(3);d(4);d(5);d(6);VLB=0 0 0 0 0 0 0 0 0 0 0 0;VUB=;x0=1 2 3 0 1 0 0 1 0 1 0 1;xx,fval=linprog(CC,A,B,Aeq,beq,VLB,VUB,x0),计算结果为:,x = 3.0000 5.0000 0.0000 7.0000 0.0000 1.0000 0.0000 0.0000 4.0000 0.0000 6.0000 10.0000fval = 136.2275,(三)改建两个
13、新料场的情形,改建两个新料场,要同时确定料场的位置(xj,yj)和运送量Xij,在同样条件下使总吨千米数最小。这是非线性规划问题。非线性规划模型为:,function f=liaoch(x)a=1.25 8.75 0.5 5.75 3 7.25;b=1.25 0.75 4.75 5 6.5 7.75;d=3 5 4 7 6 11;e=20 20;f1=0;for i=1:6 s(i)=sqrt(x(13)-a(i)2+(x(14)-b(i)2);,f1=s(i)*x(i)+f1;endf2=0;for i=7:12 s(i)=sqrt(x(15)-a(i-6)2+(x(16)-b(i-6)2)
14、; f2=s(i)*x(i)+f2;endf=f1+f2;,设 X11=X1, X21= X 2, X31= X 3, X41= X 4, X51= X 5, X61= X 6 X12= X 7, X22= X 8, X32= X 9, X42= X 10, X52= X 11, X62= X 12 x1=X13, y1=X14, x2=X15, y2=X16,(1)先编写M文件liaoch.m定义目标函数:,(2) 取初值为线性规划的计算结果及临时料场的坐标: x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;编写主程序gying2.m.,clear% x0=2 2 2
15、 2 2 2 2 2 2 2 2 2 2 2 2 2;x0=3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7;A=1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0;B=20;20;Aeq=1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
16、 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0;beq=3 5 4 7 6 11;vlb=zeros(12,1);-inf;-inf;-inf;-inf;vub=;x,fval,exitflag=fmincon(liaoch,x0,A,B,Aeq,beq,vlb,vub),(3) 计算结果为:,x= 3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867fval = 105.4626exitflag = 1,(4) 若修改主程序gying2.m,
17、取初值为上面的计算结果:x0= 3.0000 5.0000 0.0707 7.0000 0 0.9293 0 0 3.9293 0 6.0000 10.0707 6.3875 4.3943 5.7511 7.1867,得结果为:x=3.0000 5.0000 0.3094 7.0000 0.0108 0.6798 0 0 3.6906 0 5.9892 10.3202 5.5369 4.9194 5.8291 7.2852fval =103.4760exitflag = 1,总的吨千米数比上面结果略优.,(5) 若取初值为: x0=3 5 4 7 1 0 0 0 0 0 5 11 5.6348 4.8687 7.2479 7.7499, 则计算结果为:x=3.0000 5.0000 4.0000 7.0000 1.0000 0 0 0 0 0 5.0000 11.0000 5.6959 4.9285 7.2500 7.7500fval =89.8835exitflag = 1总的吨千米数89.8835比上面结果更好.,通过此例可看出fmincon函数在选取初值上的重要性.,
链接地址:https://www.31ppt.com/p-1433472.html