第三章水环境化学ppt课件.ppt
《第三章水环境化学ppt课件.ppt》由会员分享,可在线阅读,更多相关《第三章水环境化学ppt课件.ppt(281页珍藏版)》请在三一办公上搜索。
1、第三章 水环境化学 Water Environmental Chemistry,青海大学生态环境工程学院,2,水环境化学是研究化学物质在天然水体中的存在形态、反应机制、迁移转化、归趋的规律与化学行为及其对生态环境的影响。它是环境化学的重要组成部分,这些研究将为水污染控制和水资源的保护提供科学依据。,3,教学要求,理解水的基本性质及无机污染物在水体中进行沉淀溶解、氧化还原、配合作用、絮凝沉降等迁移过程的基本原理。 掌握水体pE计算,了解pEpH图的制作。 掌握水体中有机物、重金属等污染物的来源、危害及其迁移转化的基本原理。 掌握水体富营养化的来源、防治与水污染的防治对策。,4,天然水的基本特征及
2、污染物的存在形态,第一节,水中无机污染物的迁移转化,第三节,水质模型,第四节,第二节,水中有机污染物的迁移转化,5,第一节 天然水的基本特征及污染物的存在形态,一、天然水的基本特征二、水中污染物的分布和存在形态 三、水中营养元素及水体富营养化,6,一、天然水的基本特征,1、天然水的组成2、天然水的性质,7,1、天然水的组成(离子、溶解气体、水生生物) 天然水是含有可溶性物质和悬浮物的一种天然溶液。可溶性物质非常复杂,主要是岩石风化过程中,经过水溶解迁移、搬运到水中的地壳矿物质。,8,(1)天然水中的主要离子组成天然水中常见的八大离子:K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl
3、-、SO42-。常见的八大离子占天然水中离子总量的95%-99%。水中这些主要离子,常用来作为表征水体主要化学特征性指标。,9,除上述的八大离子之外,还有H+、OH-、NH4+、HS-、S2-、NO2-、NO3-、HPO4-、PO43-、Fe2+、Fe3+等。 一般水体中的特征离子海水中:一般Na+、Cl-占优势;湖水中:Na+、Cl-、SO42-占优势;,10,矿化过程和矿化度矿化过程:天然水中主要离子成分的形成过程,称为矿化过程;矿化度:矿化过程中进入天然水体中的离子成分的总量,以总含盐量(TDS-Total dissolved Solid)表示。一般天然水中的TDS可以表示为:TDS=C
4、a2+Mg2+Na+K+Fe2+Al3+HCO3-+SO42-+Cl-+CO32-+NO3-+PO43-,11,经常,近似地天然水中常见主要离子总量可以粗略地作为水的总含盐量(TDS):TDS Ca2+ + Mg2+ + Na+ + K+ + HCO3- + SO42- + Cl- ,12,(2)天然水中溶解的金属离子 水溶液中金属离子的表示式常写成Mn+,预示着是简单的水合金属阳离子M(H2O)xn+。 它可通过化学反应达到最稳定的状态。酸-碱,沉淀、配合及氧化-还原等反应是他们在水中达到最稳定状态的过程。水中金属离子常常以多种形态存在。例如铁: Fe(OH)2+, Fe(OH)2+, Fe
5、2(OH)24+, Fe3+ , 在近于中性的天然水溶液中,水合铁离子的浓度可忽略不计。,13,(3)天然水中溶解的重要气体 天然水中溶解的气体有氧气、二氧化碳、氮气、甲烷等。 水表面以CO2、N2、O2为特征,不流通的深海中CO2过饱和、有时还有硫化氢。 气体溶解在水中,对于生物种类的生存是非常重要的。 例如:鱼需要溶解氧,一般要求水体溶解氧浓度不能低于4mg/L,14,大气中的气体分子与溶液中同种气体分子间的平衡服从亨利定律,即一种气体在液体中的溶解度正比于液体所接触的该种气体的分压。气体在水中的溶解度可用以下平衡式表示:G(aq)=KHPG 式中:KH各种气体在一定温度下的亨利定律常数;
6、 PG各种气体的分压。,15,在计算气体的溶解度时,需要对水蒸气的分压加以校正(在温度较低时,这个数值很小)。根据水在不同温度下的分压,就可按亨利定律计算出气体在水中的溶解度。 氧在水中的溶解 氧在干燥空气中的含量为20.95%,大部分元素氧来自大气,因此水体与大气接触再复氧的能力是水体的一个重要特征。 藻类的光合作用会放出氧气,但这个过程仅限于白天。 所以水中溶解氧的主要来源有两个:水中藻类的光合作用释放氧气和大气再复氧作用。,16,例子:氧在水中的溶解度与水的温度、氧在水中的分压等有关。氧在1.0130105Pa、25(标准状态)饱和水中的溶解度,可按下面步骤计算。水在25时的蒸汽压为0.
7、03167105Pa,由于干空气中氧的含量为20.95%,所以氧的分压为:=(1.0130-0.03167)1050.2095=0.2056105Pa代入亨利定律即可求出氧在水中的摩尔浓度为:O2(aq)= KHPO2=1.2610-80.2056105=2.610-4 mol/L 氧的分子量为32,因此其溶解度为8.32mg/L。,17,式中: 用绝对温度 和 时气体在水中的浓度; 溶解热,J/mol; R气体常数8.314J/(molK)。 因此,若温度从0上升到35时,氧在水中的溶解度将从14.74mg/L降低到7.03mg/L,由此可见,与其他溶质相比,溶解氧的水平是不高的,一旦发生氧
8、的消耗反应,这溶解氧的水平可以很快的降至零。,气体溶解度随温度升高而降低,这种影响可由Clausius-Clapeyron(克拉帕龙)方程式显示出:,18,19,20,CO2的溶解 25时水中CO2的值可以用亨利定律来计算。已知干空气中CO2的含量为0.0314%(体积),水在25时蒸汽压为0.03167,CO2的亨利定律常数是3.3410-7mol/(LPa)( 25),则CO2在水中的溶解度为:,所以: mol/L,21,(4)水生生物水生生物可直接影响许多物质的浓度,其作用有代谢、摄取、转化、存储和释放等。水生生态系统生存的生物体,可以分为自养生物和异养生物。自养生物利用太阳能或化学能量
9、,把简单、无生命的无机物元素引进至复杂的生命分子中即组成生命体。异养生物利用自养生物产生的有机物作为能源及合成它自身生命的原始物质。,22,生产率:水体产生生物体的能力称为生产率。生产率是由化学的及物理的因素相结合而决定的。水中营养物通常决定水的生产率,水生植物需要供给适量C(二氧化碳)、N(硝酸盐)、P(磷酸盐及痕量元素)(如Fe),在许多情况下,P是限制的营养物。决定水体中生物的范围及种类的关键物质是氧,氧的缺乏可使许多水生生物死亡,氧的存在能够杀死许多厌氧细菌。在测定河流及湖泊的生物特征时,首先要测定水中溶解氧的浓度。,23,生物(或生化)需氧量BOD是另一个水质的重要常数,它是指在一定
10、体积的水中有机物降解所要消耗的氧的量。一个BOD高的水体,不可能很快的补充氧气,显然对水生生物是不利的。CO2是由水及沉积物中的呼吸过程产生的,也能从大气进入水体。藻类生命体的光合作用需要CO2,由水中有机物降解产生的高水平的CO2,可能引起过量藻类的生长以及水体的超生长率,因此,在有些情况下CO2是一个限制因素。,24,细菌等其他微生物水环境中主要微生物:原生动物、藻类、真菌、放线菌、细菌;细菌等微生物关系到水环境自然净化和废水生物处理过程的重要的微生物群体;一般污水处理中,根据氧化过程需要氧的不同,分为:厌氧菌(油酸菌、甲烷菌)、好氧菌(醋酸菌、亚硝酸菌)、兼氧菌(乳酸菌);,25,2、
11、天然水的性质,(1)碳酸平衡 二氧化碳在水中形成酸,可同岩石中的碱性物质发生反应,并可以通过沉淀反应变为沉淀物而从水中除去.在水和生物体之间生物化学交换中, 溶解的碳酸盐化合态与岩石圈大气圈进行酸碱和交换反应,对调节天然水的pH和组成有重要作用。,26,CO2 (g) CO2 (aq) +H2O H2CO3 H+ + HCO3- H+ + CO32- CaCO3(s), MgCO3(s)碳酸盐体系与水的酸度、碱度密切相关;是天然水中优良的缓冲系统,避免pH值急剧变;与水处理有关,如水质软化等;与水生生物的光合作用、呼吸作用等有关。,碳酸盐系统中存在的平衡关系,27,28,同理: 以上属封闭的水
12、溶液体系的情况,没有考虑大气交换过程。 100 CO2+H2CO3 HCO3- CO32- 80 60 40 20 0 2 4 6 8 10 12 pH,29,碳酸化合态分布图的理解:a、总体分布态势:pH6时,溶液中主要组分是H2CO3pH在6-10之间时,溶液中主要组分HCO3-pH10.3时,溶液中主要组分是CO32-b、交界点的意义: pH = pK1=6.35时,a0 = a1 = 0.50 pH = pK2=10.33时,a1 = a2 = 0.50,30,在封闭体系中,H2CO3*、HCO3-、CO32-等可随pH变化而改变,但总的碳酸量cT始终保持不变。对于开放体系,HCO3-
13、、CO32-和cT均随pH的变化而改变,但H2CO3*总保持与大气相平衡的固定数值。 因此,在天然条件下,开放体系是实际存在的,而封闭体系是计算短时间溶液组成的一种方法,即把其看成是开放体系趋向平衡过程的一个微小阶段。,31,碳酸平衡应用的实例某条河流的pH=8.3,总碳酸盐的含量CT=310-3molL-1。现在有浓度为110-2molL-1的硫酸废水排入该河流中。按照有关标准,河流pH不能低于6.7以下,问每升河水中最多能够排入这种废水多少毫升?解:由于酸碱反应十分迅速,因此可以用封闭体系的方法进行计算:pH=8.3时,河水中主要的碳酸盐为HCO3-,因此可以假设此时HCO3-=CT=31
14、0-3molL-1,如果排入酸性废水,则将会使河水中的一部分HCO3-转化为H2CO3*,即有反应: HCO3-+H+H2CO3*当河水的pH=6.7时,河水中主要的碳酸盐类为HCO3-和H2CO3*。,32,因为K1= =10-6.35,所以此时: =100.35=2.24所以0= =0.3086 1= =0.6914所以此时H2CO3*=0CT=0.3086310-3molL-1=0.925810-3molL-1HCO3-=1CT=0.6914310-3molL-1=2.074210-3molL-1加酸性废水到pH=6.7,有0.925810-3molL-1的H2CO3*生成,故每升河水中
15、要加入0.925810-3mol的H+才能满足上述要求,这相当于每升河水中加入浓度为110-2 molL-1的硫酸废水的量V为:V=0.925810-3mol/(2110-2molL-1)=0.0463L=46.3mL。因此相当于每升河水中最多加入酸性废水46.3mL。,33,(2)天然水的碱度和酸度: 碱度(Alkalinity)是指水中能与强酸发生中和作用的全部物质,亦即能接受质子H+的物质的总量。 组成水中碱度的物质可分为: A. 强碱,如 NaOH、Ca(OH)2; B. 弱碱,如 NH3、C6H5NH2; C. 强碱弱酸盐, 如 NaCO3、Na3PO4等。,34,举例:我们说碱度和
16、pH是两个不同的概念,可以通过一个例子说明:一般pH反应的是水中氢离子的活泼程度,而碱度是能够与强酸发生中和作用的全部物质,亦即能接受质子H+的物质总量。例如摩尔浓度相同的NaOH和NaHCO3与同一浓度的HCl溶液反应。NaHCO3+HCl=NaCl+H2O+CO2NaOH+HCl=NaCl+H2O二者消耗的HCl溶液是相同的,也就是说二者的碱度是相同的,但是他们的pH肯定不相同,应为一个是强碱,一个是弱碱,其中氢离子的活度肯定不相同。,35,水的碱度对于水处理,天然水的化学与生物学作用具有重要意义。通常,在水处理中需要知道水的碱度,例如常用铝盐作为絮凝剂去除水中的悬浮物:Al3+3OH-=
17、Al(OH)3(s)。胶体状的Al(OH)3(s)在带走悬浮物的同时,也除去了水中的碱度,为了不使处理效率下降,需要保持水中一定的碱度。 一般说来,高碱度的水具有较高的pH和较多的溶解固体。,36,另外,碱度与生物量之间也存在着关系:简单用下式表示:CO2+H2O+hv(光能)CH2O(表示生物物质的简单形式)+O2HCO3-+H2O+hv(光能)CH2O(表示生物物质的简单形式)+OH-+O2 所以在藻类大量繁殖时,水中CO2消耗很快,以至于不能保持与大气CO2的平衡,此时水中HCO3-代替CO2参与光合作用,造成水中的pH会很高,碱度也很高。甚至大于10。,37,总碱度:用一个强酸标准溶液
18、滴定,用甲基橙为指示剂,当溶液由黄色变成橙红色(pH约4.3),停止滴定,此时所得的结果,也称为甲基橙碱度。水中各种碱度成分的总和,即加酸至 HCO3-、CO32-全部转化为CO2。此时溶液的pH约为4.3。其化学反应的计量关系式如下:,38,因此,总碱度是水中各种碱度成分的总和,即加酸至HCO3-和CO32-全部转化为CO2。根据溶液质子平衡条件,可以得到碱度的表示式: 总碱度 = HCO3- + 2CO32- +OH- -H+此时,CT=H2CO3*,所有的HCO3-和CO32-全部转化为H2CO3*(即CO2(aq)和H2CO3),39,酚酞碱度:滴定以酚酞为指示剂,当溶液pH值降到8.
19、3时,表示OH-被中和,CO32-全部转化为HCO3-,得到酚酞碱度的表达式:酚酞碱度= CO32- +OH- - H+ - H2CO3* 此时所有的CO32-被中和,转化为HCO3-,因此又称为碳酸盐碱度。,40,苛性碱度:中和水中OH-,滴定达到终点时CO32-并未反应,这时水中碱度为苛性碱度,但不易测得。 苛性碱度= OH- - HCO3- - 2 H2CO3* - H+ =2酚酞碱度-总碱度苛性碱度=2(CO32-+OH-H2CO3*-H+)-(HCO3-+2CO32-+OH-H+) =OH-HCO3-2H2CO3*-H+,41,42,(2)天然水的碱度和酸度: 酸度(Acidity)
20、是指水中能与强碱发生中和作用的全部物质,亦即放出H+或经过水解能产生H+的物质的总量。,组成水中酸度的物质可分为: A. 强酸,如 HCl、H2SO4; B. 弱酸,如 CO2、H2CO3、各种有机酸等; C. 强酸弱碱盐, 如 FeCl、Al2(SO4)3等。,43,有反应:OH- + H+ H2O OH- + H2CO3* HCO3-+H2OOH- + HCO3- CO32-+H2O水的酸度对于水处理具有重要意义,对于酸性废水,常需要测定水中的酸度以确定需要加入水中的石灰或其他化学药剂的量。以强碱滴定含碳酸水溶液测定其酸度时,其反应过程与上述相反。以甲基橙为指示剂滴定到pH=4.3,得到无
21、机酸度。,44,无机酸度:以甲基橙为指示剂,滴定到pH=4.3。 无机酸度 = H+ - HCO3- - 2CO32- -OH- 无机酸度,又称为矿物酸度,或者甲基橙酸度(pH=4.3)。此时溶液中总碳酸盐为CT=H2CO3*,所有的H+被OH-中和。 以酚酞为指示剂滴定到pH=8.3,得到游离CO2酸度。,45,无机酸度:以甲基橙为指示剂,滴定到pH=4.3。 无机酸度 = H+ - HCO3- - 2CO32- -OH- 无机酸度,又称为矿物酸度,或者甲基橙酸度(pH=4.3)。此时溶液中总碳酸盐为CT=H2CO3*,所有的H+被OH-中和。 以酚酞为指示剂滴定到pH=8.3,得到游离CO
22、2酸度。CO2酸度=H+H2CO3*-CO32-OH-(酚酞酸度)此时此时溶液中总碳酸盐为CT=HCO3-,所有的H2CO3*被OH-中和,因此称为二氧化碳酸度。或称为酚酞酸度。,46,总酸度应在pH=10.8处得到。但此时滴定曲线无明显突跃,难以选择适合的指示剂,故一般以游离CO2作为酸度主要指标。同样也根据溶液质子平衡条件,得到总酸度:总酸度=H+HCO3-+2H2CO3*-OH-总酸度=2CO2酸度-无机酸度=2(H+H2CO3*-CO32-OH-)-(H+-HCO3-2CO32-OH-)=H+HCO3-+2H2CO3*-OH-,47,碱度和酸度计算关系式的推导。在化学计量点pH=4.3
23、(pH CO2):水中所有碳酸盐类都要转化为H2CO3*,此时一个HCO3-需要消耗1个H+,一个CO32-需要消耗2个H+,一个OH-需要消耗1个H+因此得到H+平衡方程:H+=HCO3-+2CO32-+OH-滴定前,如果上式右侧左侧,则存在总碱度,而当上式右侧左侧,存在矿物酸度,并得到其计算公式:总碱度= HCO3-+2CO32-+OH-H+矿物酸度=H+-HCO3-2CO32-OH-,48,在化学计量点pH=8.3(pH HCO3-):水中所有碳酸盐类都要转化为HCO3-,此时一个H2CO3*能够提供1个H+,一个CO32-需要消耗1个H+,一个OH-需要消耗1个H+因此得到H+平衡方程
24、:H+H2CO3*=CO32-+OH-滴定前,如果上式右侧左侧,则存在碳酸盐碱度,而当上式右侧左侧,存在二氧化碳酸度,并得到其计算公式:碳酸盐碱度= CO32-+OH-H+-H2CO3*二氧化碳酸度=H+H2CO3*-CO32-OH-,49,在化学计量点pH=10.8(pH CO32-):水中所有碳酸盐类都要转化为CO32-,此时一个HCO3-能够提供1个H+,一个H2CO3*能够提供2个H+,一个OH-需要消耗1个H+因此得到H+平衡方程:H+HCO3-+2H2CO3*=OH-滴定前,如果上式右侧左侧,则存在苛性碱度,而当上式右侧左侧,存在总酸度,并得到其计算公式:苛性碱度=OH-H+-HC
25、O3-2H2CO3*总酸度=H+HCO3-+2H2CO3*-OH-,50,用总碳酸量(CT)和相应的分布系数()来表示:,51,52,53,(3)天然水体的缓冲能力,天然水体的pH值一般在6-9之间。对于某一水体,其pH几乎不变,这表明天然水体有一定的缓冲能力,是一个缓冲体系。 一般认为,碳酸化合物是控制水体pH的主要因素,并使水体具有缓冲作用。但是,周围环境与水体之间发生的多种反应,对pH值也有影响。,54,二、水中污染物的分布和存在形态 水中污染物大体划分为八类: 耗氧污染物、致病污染物、合成有机物、植物营养物、无机物及矿物质、由土壤岩石冲刷下来的沉积物、放射性物质、热污染。,55,首先了
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 水环境 化学 ppt 课件
链接地址:https://www.31ppt.com/p-1430961.html