第七章 平面直角坐标系复习ppt课件.ppt
《第七章 平面直角坐标系复习ppt课件.ppt》由会员分享,可在线阅读,更多相关《第七章 平面直角坐标系复习ppt课件.ppt(26页珍藏版)》请在三一办公上搜索。
1、第七章 平面直角坐标系(复习一),本章知识结构图,确定平面内点的位置,画两条数轴,互相垂直,有公共原点,建立平面直角坐标系,坐标(有序数对),(x, y),象限与象限内点的符号,特殊位置点的坐标,坐标系的应用,用坐标表示位置,用坐标表示平移,1,2,3,-1,-2,-3,y,x,1,2,3,-1,-2,-3,-4,O,在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系.,A点的坐标,记作A( 2,1 ),一:由点找坐标,规定:横坐标在前, 纵坐标在后,二:由坐标找点,B( 3,-2 )?,由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点
2、就是该坐标对应的点。,B,第四象限,若点P(x,y)在第一象限,则 x 0,y 0,若点P(x,y)在第二象限,则 x 0,y 0,若点P(x,y)在第三象限,则 x 0,y 0,若点P(x,y)在第四象限,则 x 0,y 0,三:各象限点坐标的符号,第一象限,第三象限,第二象限,1.点的坐标是(,),则点在第 象限,四,一或三,3. 若点(x,y)的坐标满足 xy,且在x轴上方,则点在第 象限,二,三:各象限点坐标的符号,注:判断点的位置关键抓住象限内点的 坐标的符号特征.,4.若点A的坐标为(a2+1, -2b2),则点A在第_象限.,四,第四象限,第一象限,第三象限,第二象限,A(3,0
3、)在第几象限?,注:坐标轴上的点不属于任何象限。,四:坐标轴上点的坐标符号,四:坐标轴上点的坐标符号,1.点P(m+2,m-1)在x轴上,则点P的坐标是 .,( 3, 0 ),2.点P(m+2,m-1)在y轴上,则点P的坐标是 .,( 0, -3 ),3. 点P(x,y)满足 xy=0, 则点P在 .,x 轴上 或 y 轴上,4.若,则点p(x,y)位于 ,y轴(除(0,0)上,注意: 1. x轴上的点的纵坐标为0,表示为(x,0), 2. y轴上的点的横坐标为0, 表示为(0,y)。,原点(0,0)既在x轴上,又在y轴上。,(2). 若AB y轴,则A( m, y1 ), B( m, y2
4、),(1). 若AB x 轴,则A( x1, n ), B( x2, n ),五:与坐标轴平行的两点连线,1. 已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。,-,2. 已知点A(m,-2),点B(3,m-1),且直线ABy轴,则m的值为 。,3,已知点A(10,5),B(50,5),则直线AB的位置特点是( )A.与x轴平行 B.与y轴平行C.与x轴相交,但不垂直 D.与y轴相交,但不垂直,A,(1). 若点P在第一、三象限角的平分线上,则P( m, m ).,(2). 若点P在第二、四象限角的平分线上则P( m, -m ).,六:象限角平分线上的点,3.已知点M(
5、a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。,2.已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。,1.已知点A(2,y ),点B(x ,5 ),点A、B在一、三象限的角平分线上, 则x =_,y =_;,5,2,(1,1),变式:到两坐标轴的距离相等,(4,4)或(2,2),(4,4)或(2,2),(1)点(a, b )关于X轴的对称点是( ),a, -b,- a, b,-a, -b,(2)点(a, b )关于Y 轴的对称点是( ),(3)点(a, b )关于原点的对称点是( ),七:关于坐标轴、原点的对称点,1.已知A、B关于x轴对称,A点的坐标为(3,2),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七章 平面直角坐标系复习ppt课件 第七 平面 直角 坐标系 复习 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1429710.html