第一节 微分中值定理ppt课件.ppt
《第一节 微分中值定理ppt课件.ppt》由会员分享,可在线阅读,更多相关《第一节 微分中值定理ppt课件.ppt(30页珍藏版)》请在三一办公上搜索。
1、第三章,中值定理,应用,研究函数性质及曲线性态,利用导数解决实际问题,罗尔中值定理,拉格朗日中值定理,柯西中值定理,泰勒公式 (第三节),微分中值定理,与导数的应用,一、罗尔( Rolle )定理,第一节,二、拉格朗日中值定理,三、柯西(Cauchy)中值定理,中值定理,费马(fermat)引理,一、罗尔( Rolle )定理,且,存在,证: 设,则,证毕,由保号性,罗尔( Rolle )定理,满足:,(1) 在区间 a , b 上连续,(2) 在区间 (a , b) 内可导,(3) f ( a ) = f ( b ),使,证,几何解释:,注意:,1) 定理条件条件不全具备, 结论不一定成立.
2、,例如,例1. 证明方程,有且仅有一个小于1 的,正实根 .,证: 1) 存在性 .,则,在 0 , 1 连续 ,且,由介值定理知存在,使,即方程有小于 1 的正根,2) 唯一性 .,假设另有,为端点的区间满足罗尔定理条件 ,至少存在一点,但,矛盾,故假设不真!,设,二、拉格朗日中值定理,(1) 在区间 a , b 上连续,满足:,(2) 在区间 ( a , b ) 内可导,至少存在一点,使,几何解释:,设:,-连接两端点弦的斜率,A,B,思路: 利用逆向思维找出一个满足罗尔定理条件的函数,作辅助函数,显然 ,在 a , b 上连续 ,在 ( a , b ) 内可导,且,证:,问题转化为证,由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一节 微分中值定理ppt课件 微分 中值 定理 ppt 课件

链接地址:https://www.31ppt.com/p-1429463.html