第一章 三角形的证明 复习ppt课件.pptx
《第一章 三角形的证明 复习ppt课件.pptx》由会员分享,可在线阅读,更多相关《第一章 三角形的证明 复习ppt课件.pptx(37页珍藏版)》请在三一办公上搜索。
1、复习课件,第一章 三角形的证明,知识框架,三角形的证明,等腰三角形,等腰三角形的性质,等腰三角形的判定,勾股定理,等边三角形的性质,等边三角形的判定,直角三角形,直角三角形的性质,两个直角三角形全等的判定(HL),直角三角形的判定,等边三角形,勾股定理的逆定理,垂直平分线的性质,角平分线的性质,(4)_、底边上的中线和底边上的高互相重合,简称“三线合一”.,顶角平分线,(3)两个_相等,简称“等边对等角”;,底角,(2)轴对称图形,等腰三角形的顶角平分线所在的直线是它的对称轴;,一、等腰三角形的性质及判定,1.性质,(1)两腰相等;,要点梳理,2.判定,(1)有两边相等的三角形是等腰三角形;,
2、(2)如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简写成“_”).,等角对等边,二、等边三角形的性质及判定,1.性质,等边三角形的三边都相等;,等边三角形的三个内角都相等,并且每一个角都等于_;,是轴对称图形,对称轴是三条高所在的直线;,任意角平分线、角对边上的中线、对边上的高互相重合,简称“三线合一”.,60,2.判定,三条边都相等的三角形是等边三角形.,三个角都相等的三角形是等边三角形.,有一个角是60的_是等边三角形.,等腰三角形,(5)在直角三角形中,30的角所对的直角边等于斜边的一半.,直角三角形的性质定理1,直角三角形的两个锐角_.,互余,直角三角形的判定定理1,有两
3、个角_的三角形是直角三角形.,互余,三、直角三角形,勾股定理表达式的常见变形:a2c2b2, b2c2a2, . 勾股定理分类计算:如果已知直角三角形的两边是a,b(且ab),那么,当第三边c是斜边时,c_;当a是斜边时,第三边c_.,四、勾股定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 . 即:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有 .,平方,注意 只有在直角三角形里才可以用勾股定理,运用时要分清直角边和斜边,a2b2c2,五、勾股定理的逆定理 如果三角形的三边长a、b、c有关系:a2b2 ,那么这个三角形是直角三角形利用此定理判定直角三角形的
4、一般步骤:,(1)确定最大边;(2)算出最大边的平方与另两边的 ;(3)比较最大边的平方与另两边的平方和是否相等,若相等,则说明这个三角形是 三角形到目前为止判定直角三角形的方法有:(1)说明三角形中有一个角是 ;(2)说明三角形中有两边互相 ;(3)用勾股定理的逆定理,平方和,直角,直角,垂直,注意 运用勾股定理的逆定理时,要防止出现一开始就写出a2b2c2之类的错误,c2,1互逆命题在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题叫做互逆命题2逆命题每一个命题都有逆命题,只要将原命题的条件改成 ,并将结论改成 ,便可以得到原命题的逆命题
5、,结论,条件,结论,条件,六、逆命题和互逆命题,3逆定理如果一个定理的逆命题经过证明是真命题,那么,它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的 定理注意 每个命题都有逆命题,但一个定理不一定有逆定理如“对顶角相等”就没有逆定理,逆,1.线段垂直平分线的性质定理: 线段中垂线上的点到线段两端点的距离相等.,2.逆定理: 到线段两端点的距离相等的点在线段的垂直平分线上.,七、线段的垂直平分线,3常见的基本作图(1)过已知点作已知直线的 ;(2)作已知线段的垂直 线,垂线,平分,4.三角形的三边的垂直平分线的性质:三角形的三边的垂直平分线相交于一点,且到三个顶点的距离相等.,1.性
6、质定理:角平分线上的点到角两边的距离相等.2.判定定理:在一个角的内部,到角两边距离相等的点在角的平分线.3.三角形的三条内角平分线的性质:三角形的三条内角平分线相交于一点,且到三边的距离相等.,八、角平分线的性质与判定,例1 如图所示,在ABC中,AB=AC,BDAC于D.求证: BAC = 2DBC.,【分析】根据等腰三角形“三线合一”的性质,可作顶角BAC的平分线,来获取角的数量关系.,考点讲练,证明:作BAC的平分线AE,交BC于点E,如图所示, 则,AB=AC, AEBC., 2+ ACB=90 .,BDAC, DBC+ ACB=90 ., 2= DBC., BAC= 2DBC.,等
7、腰三角形的性质与判定是本章的重点之一,它们是证明线段相等和角相等的重要依据,等腰三角形的特殊情形等边三角形的性质与判定应用也很广泛,有一个角是30的直角三角形的性质是证明线段之间的倍份关系的重要手段.,1. 如图,在ABC中,AB=AC时,(1)ADBC, _= _;_=_.(2) AD是中线,_; _= _.(3) AD是角平分线,_ _;_=_.,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,例2 在ABC中,已知BD是高,B90,A、B、C的对边分别是a、b、c,且a3,b4,求BD的长,解:B90,b是斜边,则在RtABC中,由勾股定理,得又SABC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一章 三角形的证明 复习ppt课件 三角形 证明 复习 ppt 课件
链接地址:https://www.31ppt.com/p-1429237.html