优质课选修4 4第二讲 参数方程(圆锥曲线的参数方程)ppt课件.ppt
《优质课选修4 4第二讲 参数方程(圆锥曲线的参数方程)ppt课件.ppt》由会员分享,可在线阅读,更多相关《优质课选修4 4第二讲 参数方程(圆锥曲线的参数方程)ppt课件.ppt(71页珍藏版)》请在三一办公上搜索。
1、第二讲 参数方程,(1),并且对于t的每一个允许值, 由方程组(1) 所确定的点M(x,y)都在这条曲线上, 那么方程(1) 就叫做这条曲线的参数方程, 联系变数x,y的变数t叫做参变数, 简称参数.,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。,关于参数几点说明: 参数是联系变数x,y的桥梁,参数方程中参数可以是有物理意义, 几何意义, 也可以没有明显意义。2.同一曲线选取参数不同, 曲线参数方程形式也不一样3.在实际问题中要确定参数的取值范围,1、参数方程的概念:,一般地, 在平面直角坐标系中,如果曲线上任意一点的坐标x, y都是某个变数t的函数,复习,圆的参数方程,1.
2、圆心在原点,半径为r的圆的参数方程:,2.圆心为(a, b),半径为r的圆的参数方程:,y,x,o,r,M(x,y),例、已知圆方程x2+y2 +2x-6y+9=0,将它化为参数方程。,解: x2+y2+2x-6y+9=0化为标准方程, (x+1)2+(y-3)2=1,,参数方程为,(为参数),椭圆的标准方程:,椭圆的参数方程:,离心角,一般地:,在椭圆的参数方程中,常数a、 b分别是椭圆的长半轴长和短半 轴长. ab,椭圆的标准方程:,椭圆的参数方程:,离心角,一般地:,在椭圆的参数方程中,常数a、 b分别是椭圆的长半轴长和短半 轴长. ab,练习 把下列普通方程化为参数方程.,(1),(2
3、),说明:, 这里参数 叫做双曲线的离心角与直线OM的倾斜角不同., 双曲线的参数方程可以由方程 与三角恒等式 相比较而得到,所以双曲线的参数方程的实质是三角代换.,抛物线的参数方程,o,y,x,),H,M(x,y),小结: 参数方程化为普通方程的过程就是消参过程常见方法有三种:,1.代入法:利用解方程的技巧求出参数t,然后代入消 去参数2.三角法:利用三角恒等式消去参数3.整体消元法:根据参数方程本身的结构特征,从 整体上消去。,化参数方程为普通方程为F(x,y)=0:在消参过程中注意变量x、y取值范围的一致性,必须根据参数的取值范围,确定f(t)和g(t)值域得x、y的取值范围。,步骤:(
4、1)消参; (2)求定义域;,例4,思考:为什么(2)中的两个参数方程合起来才是椭圆的参数方程?,复习,圆的参数方程,1.圆心在原点,半径为r的圆的参数方程:,2.圆心为(a, b),半径为r的圆的参数方程:,3.椭圆的标准方程:,它的参数方程是什么样的?,例4,小 结,椭圆的标准方程:,椭圆的参数方程:,离心角,一般地:,在椭圆的参数方程中,常数a、 b分别是椭圆的长半轴长和短半 轴长. ab,练习 把下列普通方程化为参数方程.,(1),(2),直线的参数方程(标准式),思考: (1)直线的参数方程中哪些是常量?哪些是变量? (2)参数t的取值范围是什么? (3)该参数方程形式上有什么特点?
5、,2.圆心为(a, b),半径为r的圆的参数方程:,|t|=|M0M|,x,y,O,M0,M,解:,所以,直线参数方程中参数t的绝对值等于直线上动点M到定点M0的距离.,这就是t的几何意义,要牢记,注意向量工具的使用.,此时,若t0,则 的方向向上;若t0,则 的点方向向下; 若t=0,则M与点M0重合.,x,M(x,y),O,M0(x0,y0),y,|t|=|M0M|,设M1M2它们所对应的参数值分别为t1,t2.,(1)|M1M2|,(2)M是M1M2的中点,求M对应的参数值,t=,解:因为椭圆的参数方程为,所以可设点M的坐标为,由点到直线的距离公式,得到点M到直线的距离为,例1、如图,在
6、椭圆 上求一点M,使M到直线 l:x+2y-10=0的距离最小.,d,说明:, 这里参数 叫做双曲线的离心角与直线OM的倾斜角不同., 双曲线的参数方程可以由方程 与三角恒等式 相比较而得到,所以双曲线的参数方程的实质是三角代换.,抛物线的参数方程,o,y,x,),H,M(x,y),( ),c,2,例1、已知椭圆 上点M(x, y),(2)求2x+3y的最大值和最小值;,例2、如图,在椭圆x2+8y2=8上求一点P,使P到直线 l:x-y+4=0的距离最小.,分析1:,分析2:,分析3:,平移直线 l 至首次与椭圆相切,切点即为所求.,例3、已知椭圆 有一内接矩形ABCD,求矩形ABCD的最大
7、面积。,练习 已知A,B两点是椭圆 与坐标轴正半轴的两个交点,在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大.,例4 求椭圆 的内接矩形的面积及周长的最大值。,解:设椭圆内接矩形在第一象限的顶点是,矩形面积和周长分别是S、L,此时存在。,例6 取一切实数时,连接 A(4sin,6cos)和B(-4cos, 6sin)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段,例5 四边形ABCD内接于椭圆 其中点A(3,0),C(0,4),B、D分别位于椭圆第一象限与第三象限的弧上。求四边形ABCD面积的最大值。,例7 已知点A在椭圆 上运动,点B(0, 9)、点M在线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优质课选修4 4第二讲 参数方程圆锥曲线的参数方程ppt课件 优质课 选修 第二 参数 方程 圆锥曲线 ppt 课件
链接地址:https://www.31ppt.com/p-1425673.html