晶体学基础ppt课件.ppt
《晶体学基础ppt课件.ppt》由会员分享,可在线阅读,更多相关《晶体学基础ppt课件.ppt(107页珍藏版)》请在三一办公上搜索。
1、第二章 材料中的晶体结构,主要内容:一、晶体学基础二、典型晶体结构及其几何特征,2.1 晶体与非晶体,1.晶体的定义物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。2. 非晶体非晶体在整体上是无序的 ;近程有序 。,图 材料中原子的排列,(1)周期性(不论沿晶体的哪个方向看去,总是相隔一定的距离就出现相同的原子或原子集团。这个距离称为周期 )液体和气体都是非晶体。(2)有固定的凝固点和熔点.(3)各向异性(沿着晶体的不同方向所测得的性能通常是不同的 :晶体的导电性、导热性、热膨胀性、弹性、强度、光学性质 )。,3. 晶体的特征,a.根本区别:质点是否在三维空
2、间作有规则的周期性重复排列b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”),4.晶体与非晶体的区别,玻璃经高温长时间加热后能形成晶态玻璃通常呈晶体的物质如果将它从液态快速冷却下来也可能得到非晶态获得非晶态的金属和合金(采用特殊的制备方法 ),5.晶体与非晶体的相互转化,思考题,常见的金属基本上都是晶体,但为什么不显示各向同性?多晶中各个晶粒往往取向不同,所以多个晶粒集合在一起在任一方向上都显示不出某一个晶向的特性来。,2.2.1 空间点阵和晶胞,1.基本概念(1)阵点、空间点阵阵点:为了便于研
3、究晶体中原子(分子或离子)的排列情况,将晶体看成是无错排的理想晶体,忽略其物质性,抽象为规则排列于空间的无数几何点。这些点代表原子(分子或离子)的中心,也可是彼此等同的原子群或分子群的中心,各点的周围环境相同。可能在每个结点处恰好有一个原子,也可能围绕每个结点有一群原子(原子集团)。空间点阵:阵点的空间排列称为空间点阵。,2.2 晶体学基础,(2)晶格将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。(3)晶胞从点阵中取出一个仍能保持点阵特征的最基本单元叫晶胞。 在空间点阵中,能代表空间点阵结构特点的是小平行六面体 。整个空间点阵可由晶胞作三维的重复堆砌而构成。,图 空间点阵,(1)晶胞几
4、何形状能够充分反映空间点阵的对称性;(2)平行六面体内相等的棱和角的数目最多;(3)当棱间呈直角时,直角数目应最多;(4)满足上述条件,晶胞体积应最小。,图 晶胞的选取,2.晶胞的选取原则:,晶胞的尺寸和形状可用点阵参数来描述,它包括晶胞的各边长度和各边之间的夹角。,图 晶胞、晶轴和点阵参数,3. 描述晶胞的六参数,2.2.2 晶系和布拉菲点阵,1.晶系,奥古斯特布拉菲(Auguste Bravais,又译布拉伐、布喇菲,1811年1863年),法国物理学家,于1845年得出了三维晶体原子排列的所有14种布拉菲点阵结构,首次将群的概念应用到物理学,为固体物理学做出了奠基性的贡献。除此之外,布拉
5、菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。,2.2.2 晶系和布拉菲点阵,1.七个晶系,按照“每个阵点的周围环境相同”的要求,最先是布拉菲(A. Bravais)用数学方法证明了只能有14种空间点阵。通常人们所说的点阵就是指布拉菲点阵。,图 布拉菲点阵,2. 十四种布拉菲点阵,思考题,体心单斜点阵是不是一个新的点阵?,体心单斜点阵晶胞为ABCD-EFHG。可以连成底心单斜点阵,其晶胞为JABD-KEFG 。,晶体结构和空间点阵的区别,空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各阵点的周围环境相同,它只能有14中类型,晶体结构则是
6、晶体中实际质点(原子、离子或分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。,图 结构相似的不同点阵,图 几种晶体结构的点阵分析(a) -Fe (b) NaCl (c) CaF2 (d) ZnS,晶向:空间点阵中各阵点列的方向。晶面:通过空间点阵中任意一组阵点的平面。国际上通用米勒指数标定晶向和晶面。,William H. Miller矿物学家(1801-1880,英国),2.2.3 晶面指数和晶向指数,在材料科学中,讨论晶体的生长、变形和固态相变等问题时,常要涉及到晶体的某些方向(晶向)和某些平面(晶面)。,(1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上
7、的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上;(2)确定该晶向上距原点最近的一个阵点P的三个坐标值(xa,yb,zc);(3)将x,y,z化成最小的简单整数比u,v,w,且uvw = xyz;(4)将u,v,w三数置于方括号内就得到晶向指数uvw。,晶体中点阵方向的指数,由晶向上阵点的坐标值决定。,1.晶向指数的标定,图 晶向指数的标定,a.指数意义:代表相互平行、方向一致的所有晶向。b.负值:标于数字上方,表示同一晶向的相反方向。c.晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向,用表示。数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。,eg:立方晶系中,八
8、个晶向是立方体中,四个体对角线的方向,其原子排列完全相同,属同一晶向族,故用表示。,晶向指数的说明:,(1)建立一组以晶轴a,b,c为坐标轴的坐标系。(2)求出待标晶面在a,b,c轴上的截距xa,yb,zc。如该晶面与某轴平行,则截距为。(3)取截距的倒数1/xa,1/yb,1/zc。(4)将这些倒数化成最小的简单整数比h,k,l,使hkl= 1/xa1/yb1/zc。(5)如有某一数为负值,则将负号标注在该数字的上方,将h,k,l置于圆括号内,写成(hkl),则(hkl)就是待标晶面的晶面指数。,晶体中点阵平面的指数,由晶面与三个坐标的截距值所决定。,2.晶面指数的标定,图 晶面指数的标定,
9、图 晶面指数的标定,晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面 a.指数意义:代表一组平行的晶面;b.0的意义:面与对应的轴平行;c.平行晶面:指数相同,或数字相同但正负号相反;d.晶面族:晶体中具有相同条件(原子排列和晶面间距完全相同),空间位向不同的各组晶面,用hkl表示。 e.若晶面与晶向同面,则hu+kv+lw=0;f.若晶面与晶向垂直,则u=h, k=v, w=l。,晶面指数的说明:,110 晶面族,六方晶系的晶向指数和晶面指数同样可以应用上述方法标定,这时取a1,a2,c为晶轴,而a1轴与a2轴的夹角为120度,c轴与a1,a2轴相垂直。但这种方法标定的晶面指数和
10、晶向指数,不能显示六方晶系的对称性,同类型 晶面和晶向,其指数却不相雷同,往往看不出他们的等同关系。,3.六方系晶面和晶向指数标定,根据六方晶系的对称特点,对六方晶系采用a1,a2,a3及c四个晶轴,a1,a2,a3之间的夹角均为120度,这样,其晶面指数就以(h k i l)四个指数来表示。,根据几何学可知,三维空间独立的坐标轴最多不超过三个。前三个指数中只有两个是独立的,它们之间存在以下关系:i ( h + k ) 。因此,可以由前两个指数求得第三个指数 。,采用四轴坐标,六方晶系晶向指数的标定方法如下:当晶向通过原点时,把晶向沿四个轴分解成四个分量,晶向OP可表示为:OP=ua1+va2
11、+ta3+wC,晶向指数用uvtw表示,其中t=-(u+v) 采用三轴坐标系时。C轴垂直底面,a1、a2轴在底面上,其夹角为120o , UVW。采用三轴制虽然指数标定简单,但原子排列相同的晶向本应属于同一晶向族,其晶向指数的数字却不尽相同。,六方晶系晶向指数的标定:,图 六方系晶面指数的标定,u2UVv2VU/3tUV/3wW,图 六方晶系的一些晶向指数与晶面指数,相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直线称为晶带轴 设晶带轴的指数为uvw,则晶带中任何一个晶面的指数(hkl)都必须满足:hu+kv+lw=0,满足此关系的晶面都属于以uvw为晶带轴的晶带。晶带定律,(a) 由
12、两晶面(h1k1l1) (h2k2l2)求其晶带轴uvw: u=k1l2-k2l1; v=l1h2-l2h1; w=h1k2-h2k1。 (b) 由两晶向u1v1w1u2v2w2求其决定的晶面(hkl)。 h=v1w1-v2w2; k=w1u2-w2u1; l=u1v2-u2v1。,4.晶带,5.晶面间距,一组平行晶面中,相邻两个平行晶面之间的距离。,由晶面指数求面间距dhkl,通常,低指数的面间距较大,而高指数的晶面间距则较小,晶面间距愈大,该晶面上的原子排列愈密集;晶面间距愈小,该晶面上的原子排列愈稀疏。,晶面间距公式的推导,简单晶胞计算公式,正交晶系,立方晶系,六方晶系,上述公式仅适用于
13、简单晶胞,对于复杂晶胞则要考虑附加面的影响,fcc 当(hkl)不为全奇、偶数时,有附加面:,通常低指数的晶面间距较大,而高指数的晶面间距则较小,bcc 当hkl奇数时,有附加面:,六方晶系,立方晶系:,如0 0 0 1面,点群(point group)晶体中所有点对称元素的集合根据晶体外形对称性,共有32种点群空间群(space group)晶体中原子组合所有可能方式根据宏观、微观对称元素在三维空间的组合,可能存在230种空间群(分属于32种点群),三、晶体的对称性 crystalline symmetry symmetrization of crystals若干个相同部分 假想的几何要素,
14、变换 重合复原对称性晶体的基本性质 对称性元素(symmetry elements),四、极射投影 Stereographic projection 极射投影原理(principle) 参考球,极点、极射面、大图、基图 Wulff网(wullf net)经线、 纬线、2等分,沿基圆读数,只有两极点位于吴氏经线或赤道上才能正确度量晶面、晶向间夹角标准投影:以某个晶面/投影面作出极射投影图。 (001),五、倒易点阵(Reciprocal lattice)布拉格方程: n = 2dsin寻求一种新的点阵(抽象),使其每一阵点对应着实际点阵中的一定晶面,而且既能反映该晶面的取向,又能反映其晶面间距。
15、晶体点阵(正点阵)三个基矢a、b、c与其相应的倒易点阵的基矢a*、b*、c*之间的关系如下:,a*,b*,c*与a,b,c的关系示意图,关于倒易点阵的更一般的定义,习 题,1.标出出面心立方晶胞中(111)面上各点的坐标, (320)、(112)面及110、011、112、211方向2.计算立方晶系(包括简单立方、面心立方、 体心立方) d(345)和六方晶系d(1122)的晶面间距3.作出立方晶系111晶面族的所有晶面4.为什么密排六方结构属于简单六方点阵?画出(1012)、(2111)面 和1120、2111方向5.正交点阵中画出以001为晶带轴的所有晶面,2 金属的晶体结构(Crysta
16、l Structure of Metals),体心立方点阵,面心立方点阵,密排六方点阵,表2.5三种典型金属结构的晶体学特点,晶胞中的原子数(Number of atoms in unit cell),点阵常数(lattice parameter)a,c原子半径(atomic radius) R配位数(coordination number) N,致密度(Efficiency of space filling),轴比(axial ratio) c/a,堆垛(Stacking)密排结构(close-packed crystal structure)最密排面(close-packed plane
17、of atoms)fcc 1 1 1 ABCABCABChcp0 0 0 1 ABABABAB,间隙(Interstice)四、八面体间隙,fcc,hcp 间隙为正多面体,且八面体和四面体间隙相互独立bcc 间隙不是正多面体,四面体间隙包含于八面体间隙之中,tetrahedraloctahedral,interstice,图2.32 面心立方结构中的间隙,图2.33 体心立方结构中的间隙,图2.34 密排六方结构中的间隙,多晶型转变(allotropic transformation)同素异构转变,一. 固溶体 Solid solution 固溶体:溶质原子(solute atom)溶入基体(
18、matrix)中所形成的均匀 结晶相。晶体结构保持基体金属的结构,置换固溶体 Substitutional solid solution,间隙固溶体 Interstitial solid solution,按溶质原子位置分 固溶体, 3 合金的相结构 Phase constitution of Alloys,第一类固溶体 primary solid solution,第二类固溶体 secondary solid solution,按溶剂(solvent) 类别分,1.置换固溶体 Substitutional solid solution 溶质原子置换了部分的溶剂原子 影响溶解度的因素: ) 组
19、元的晶体结构crystal structure of components 晶体结构相同是组元之间形成无限固溶体的必要条件 )原子尺寸因素the size factor effect r1415才有可能形成溶解度较大甚至无限固溶的固溶体 )化学亲和力(电负性因素)the electrochemical effect 在不形成化合物的条件下,电负性差值增大,溶解度增大 在形成化合物的条件下,电负性差值增大,溶解度减小 )电子浓度(原子价因素)the relative valency effect 合金中各组元的价电子总和(e)与组元的原子数总和(a)之比,V、v分别为溶剂、溶质原子价,Nb Mo
20、 Rh Pd5 6 9 10,溶质原子分布于溶剂晶格间隙而形成的固溶体间隙固溶体溶质原子 (R0.1nm) 如: H B C N O 0.046 0.097 0.077 0.071 0.060溶剂元素大多为过渡族元素有限固溶体溶解度与溶剂元素的晶格类型密切相关C 在-Fe(bcc) 0.0218 wt % -Fe (fcc) 2.11 wt %,2. 间隙固溶体 Interstitial solid solution,短程有序参数,B周围出现A原子的几率大于其它原子倾向于以异类原子为邻,B周围出现A原子的几率小于其它原子倾向于以同类原子为邻,3.有序固溶体 Ordered solid solu
21、tion,长程有序固溶体(Long Range Order)超结构 (superlattice, superstructure),超结构的结构类型fcc CuAu型 385以下形成 CuAu型 385410以下形成,b) bcc Fe-Al CuZn,c ) hcp Mg-Cd,Cu3Au 型 390有序化,长程有序参数,或,PA(或B)原子正确位置上出现A(B)原子几率,完全有序时 P1 S1 最大值完全无序时 PXA S1 0,1.温度升高,原子热运动提高,S降低2.冷却速度 Tc 以上温度快速冷却无序3.合金成分 例:对 CuAu 合金 Cu:Au3:1 或 1:1 时完全有序,有序化影
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 晶体学 基础 ppt 课件

链接地址:https://www.31ppt.com/p-1421780.html