导数与函数的最值ppt课件.ppt
《导数与函数的最值ppt课件.ppt》由会员分享,可在线阅读,更多相关《导数与函数的最值ppt课件.ppt(29页珍藏版)》请在三一办公上搜索。
1、1,导数与函数的最大(小)值,北师大版高中数学选修2-2第三章导数应用,河北隆尧第一中学,2,一、教学目标:1、知识与技能:会求函数的最大值与最小值。2、过程与方法:通过具体实例的分析,会利用导数求函数的最值。3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法。二、教学重点:函数最大值与最小值的求法 教学难点:函数最大值与最小值的求法三、教学方法:探究归纳,讲练结合四、教学过程:,3,必要条件,(一)、知识回顾:,4,f(a),f(b),极大值点和极小值点统称为极值点,极大值和极小值统称为极值,函数极值的判定定理,5,结合课本练习思考,极大值一定比极小值大吗?,极值是函数的
2、局部性概念,结论:不一定,极大值,极小值,极小值,6,导数的应用之三:求函数最值.,在某些问题中,往往关心的是函数在整个定义域区间上,哪个值最大或最小的问题,这就是我们通常所说的最值问题.,(二)、新课引入,问:最大值与最小值可能在何处取得?,怎样求最大值与最小值?,观察极值与最值的关系:,7,函数的最值,观察右边一个定义在区间a,b上的函数y=f(x)的图象,你能找出函数y=f(x)在区间a,b上的最大值、最小值吗?,发现图中_是极小值,_是极大值,在区间上的函数的最大值是_,最小值是_。,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,8,
3、在闭区间a,b上的函数y=f(x)的图象是一条连续不断的曲线,则它必有最大值和最小值.,9,(2)将y=f(x)的各极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个最小值,求f(x)在闭区间a,b上的最值的步骤:,(1)求f(x)在区间(a,b)内极值(极大值或极小值),(三)、新课探析:,求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范围内讨论问题,是一个局部概 念,而函数的最值是对整个定义域而言,是在整体范围 内讨论问题,是一个整体性的概念.,(2)闭区间a,b上的连续函数一定有最值.开区间(a,b)内 的可导函数不一定有最值,但若有唯一的极值,则此极 值必是函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 函数 ppt 课件
链接地址:https://www.31ppt.com/p-1414978.html