回归分析的基本思想及其初步应用(二)ppt课件.ppt
《回归分析的基本思想及其初步应用(二)ppt课件.ppt》由会员分享,可在线阅读,更多相关《回归分析的基本思想及其初步应用(二)ppt课件.ppt(26页珍藏版)》请在三一办公上搜索。
1、2022/11/20,郑平正 制作,3.1回归分析的基本思想及其初步应用(二),高二数学 选修1-2,比数学3中“回归”增加的内容,数学统计画散点图了解最小二乘法的思想求回归直线方程ybxa用回归直线方程解决应用问题,选修-统计案例引入线性回归模型ybxae了解模型中随机误差项e产生的原因了解相关指数 R2 和模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果,回归分析的内容与步骤:,统计检验通过后,最后是利用回归模型,根据自变量去估计、预测因变量。,回归分析通过一个变量或一些变量的变化解释另一变量的变化。,其主要内容和步骤是:首先根据理论和对
2、问题的分析判断,将变量分为自变量和因变量;,其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;,由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验;,例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。,案例1:女大学生的身高与体重,解:1、选取身高为自变量x,体重为因变量y,作散点图:,2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。,分析:由于问题中要求根据身高预报体重,因此选取身高为自变量,体重为因变量,2.回归
3、方程:,1. 散点图;,探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?,例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。,案例1:女大学生的身高与体重,解:1、选取身高为自变量x,体重为因变量y,作散点图:,2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。,3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。,我们可以用下面的线
4、性回归模型来表示:y=bx+a+e, (3)其中a和b为模型的未知参数,e称为随机误差。,另一方面,由于公式(1)和(2)中 和 为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因。,思考:产生随机误差项e的原因是什么?,随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高 y 的因素不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。 以上三项误差越小,说明我们的回归模型的拟合效果越好。,函数模型与回归模型之间的差别,函数模型:,回归模型:
5、,可以提供选择模型的准则,函数模型与回归模型之间的差别,函数模型:,回归模型:,线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。,在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。,所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为,思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?,假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人
6、的体重都为54.5kg。,在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解析变量(身高)或随机误差的影响。,对回归模型进行统计检验,例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。,编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析变量(身高)和随机误差共同把这名学生的体重从50kg“推”到了54.5kg,相差-4.5kg,这时解析变量和随机误差的组合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 分析 基本 思想 及其 初步 应用 ppt 课件

链接地址:https://www.31ppt.com/p-1406837.html