化工原理上册ppt课件第三版.ppt
《化工原理上册ppt课件第三版.ppt》由会员分享,可在线阅读,更多相关《化工原理上册ppt课件第三版.ppt(751页珍藏版)》请在三一办公上搜索。
1、0 绪 论,一、化工生产过程,1. 化工生产过程:对原料进行化学加工获得有用产品的过程称为化工生产过程。,乙烯,氯,提纯,提纯,单体合成,反应热,分离,裂解,精制氯乙烯,聚合,脱水干燥,成品,分离,氧氯化,提纯,乙烯,空气,水,反应热,5503MPa,2200.5MPa,5500.8MPa,CH2=CH2+Cl2,CH2ClCH2Cl,CH2ClCH2Cl,CHCl=CH2+HCl,2CH2=CH2+2HCl+O2,2CHCl-CH2+2H2O,HCl,聚氯乙烯生产,一氯苯的生产(一氯苯的质量分数达99.9%),苯,氯气,提纯,氯化器,氯化液,一氯苯69%,二氯苯1%,苯29%,水洗中和,中性
2、氯化液,常压精馏,粗氯苯,一氯苯97%,二氯苯3%,苯0.01%,减压精馏,轻组分,重组分,一氯苯9.99%,【苯、一氯苯、二氯苯的常压沸点/】,2 .化工过程原则流程,原料,反应物料制备,化学反应,反应产物分离,废料处理,废料,产品,可利用原料,药物和制药工业:反应设备投资占10%,其他单元操作的设备投资占90%。,3. 单元操作在化工及其相近工业中的重要作用,化学和石油化学工业:反应设备投资占11%,其他单元操作的设备投资占89%;,二 、单元操作的分类与特点,1. 单元操作分类,单元操作所遵循的规律,遵循流体动力学基本规律的单元操作,包括流体输送、沉降、过滤、物料混合(搅拌)。,遵循热量
3、传递基本规律的单元操作,包括加热、冷却、冷凝、蒸发等。,遵循质量传递基本规律的单元操作,包括蒸馏、吸收、萃取、吸附、膜分离等。,同时遵循热、质传递规律的单元操作,包括气体的增湿与减湿、结晶、干燥等。,单元操作的目的,流体输送,物料的混合,物料的加热与冷却,均相混合物的分离,非均相混合物的分离,2. 单元操作特点, 同一单元操作在不同的化工生产中遵循相同的过程规律,但在操作条件及设备类型(或结构)方面会有很大差别。, 物理过程。, 对同样的工程目的,可采用不同的单元操作来实现。,三 、本课程研究方法,1 .实验研究方法(经验法),2. 数学模型法(半经验半理论方法),研究工程问题的方法论,传递过
4、程,分析过程机理,物理模型,数学模型,含模型参数的结果,求得模型参数,合理简化,数学描述,求解,实验,四 、联系单元操作的两条主线,五、 化工过程计算的理论基础,化工过程计算的类型:设计型计算和操作型计算,物料衡算,平衡关系,计算依据:,能量衡算,速率关系,六、 本课程特点及学习要求,1. 本课程特点,该课程是化工类及相近专业一门重要的技术基础课,兼有“科学”与“技术”的特点,研究内容:各单元操作的基本原理,所用的典型设备的结构、工艺尺寸设计和设备的选型。,2. 学习要求,(4) 过程开发或科学研究能力,(1)单元操作和设备选择的能力,(2)工程设计能力,(3)操作和调节生产过程的能力,3.
5、考核,七、教学安排,1. 理论课 108学时+课程设计2周+实验,2. 理论课安排,王志魁.化工原理(第三版). 北京:化学工出版社,2005陈敏恒.化工原理(上下册). 北京:化学工出版社,2000何潮洪,窦梅,朱明乔,等.化工原理习题精解(上册).北京:科学技术出版社,2003何潮洪,南碎飞,安越,等.化工原理习题精解(下册).北京:科学技术出版社,2003丛德兹,丛梅,方图南.化工原理详解与应用. 北京:化学工出版社,2002丁忠伟,杨祖荣.化工原理学习指导. 北京:化学工出版社,2006,八、 参考书,7. 柴诚敬,王军,陈常贵,郭翠梨. 化工原理学习指导. 天津:天津大学出版社,20
6、038. 黄华江. 实用化工计算机模拟Matlab在化学工程中的应用. 北京:化学工出版社,2004,1.1 概述,1.1.1 流体流动的考察方法,1.1.2 流体流动中的作用力,1.1.1 流体流动的考察方法,一、流体的特征与压缩性,1. 特征:易于变形,2. 压缩性,可压缩流体,不可压缩流体,如:气体,如:液体,二、流体质点与连续性假设,1. 质点的含义,质点:由大量分子构成的集团(微团),是保持流体宏观力学性的最小流体单元,从尺寸说是微观上充分大,宏观上充分小的分子团。,微观上充分大,分子团的尺度分子的平均自由程,宏观上充分小,分子团的尺度所研究问题的特征尺寸,对分子运动作统计平均,以得
7、到表征宏观现象的物理量,物理量都可看成是均匀分布的常量,V=10-5cm3,分子数目N=2.71014个,3. 连续性假定,流体由无数的彼此相连的流体质点组成,是一种连续性介质,其物理性质和运动参数也相应连续分布。, 内容, 适用范围,绝大多数情况适用,但高真空下的气体不适用。,三、运动的描述方法拉格朗日法和欧拉法,1. 拉格朗日法,描述同一质点在空间不同时刻的状态,2. 欧拉法,描述空间各点的状态及其与时间的关系,例如:位移的描述: sf(t),uxfx(x,y,z,t)uyfy(x,y,z,t)uzfz(x,y,z,t),例如:速度的描述,四、定态与稳定,1. 定态,指全部过程参数均不随时
8、间而变,定态流动:流场中各点的流动参数只随位置变化而与时间无关。,非定态流动:流场中各点的流动参数随位置与(或)时间而变化。,定态流动,非定态流动,指过程抗外界干扰的能力,当外界扰动移去后,过程能恢复到原有状态者,该过程是稳定的或具有稳定性。反之,则是不稳定的。,2. 稳定,五、流线与轨线,1. 流线,a. 流线不能相交,因为空间一点只有一流速;,特点:,b. 流体质点流动时不能穿越流线,因为质点的流速与流线相切。,2. 轨线,某一段时间间隔内某一特定的流体质点在空间所经过的路线轨迹。,3. 流线与轨线的比较,六、系统与控制体,1. 系统,众多流体质点的集合,与外界间的分界称为系统边界。,系统
9、与外界可以有力的作用与能量的交换,却无质量交换。,2. 控制体或称为划定体积,流体可自由进出控制体,控制面上可有力的作用与能量的交换。,当划定一固定的空间体积来考虑问题,该空间体积称为控制体。,构成控制体空间界面称为控制面,控制面总是封闭的固定界面。,1.1.2 流体流动中的作用力,一、质量力,作用于所考察对象的每一个质点上的力,并与流体的质量成正比,二、表面力,1. 表面力:作用于所考察对象表面上的力,与表面积成正比。,2. 应力:单位面积上所受到的表面力。,表面力,切向力(剪力),法向力,拉力,压力,压应力(压强),剪应力,拉应力,3. 表面力的分解,三、剪应力,1. 黏性, 含义:当流体
10、流动时,流体内部存在着内摩擦力,这种内摩擦力会阻碍流体的流动,流体的这种特性称为黏性。, 实验 (两平行平板间距很小),y方向的速度分布为线性,产生内摩擦力的根本原因:流体具有黏性。,内摩擦力:运动着的流体内部相邻两流体层间的相互作用力。,2. 牛顿黏性定律,粘度,的流体,理想流体:,3. 牛顿型流体,层流时服从牛顿黏性定律的流体。所有气体和大部分低分子量(非聚合)的液体或溶液均属于牛顿型流体。,4. 黏度, 物理意义,速度梯度为1时,单位受力面积上的流体层间内摩擦力的大小。,黏性的物理本质是分子间的引力和分子的运动与碰撞。, 单位及其换算,1Pa.s=10P=1000cP, 影响因素,温度影
11、响因素分析:,气体的分子间距较大,产生黏性的主要原因在于气体分子本身的运动。,液体的分子紧密排列,分子间距较小,产生黏性的主要原因在于液体分子间的引力。, 混合流体的黏度,b. 常压下混合气体的黏度,c. 分子不缔合的混合液黏度,a. 查阅相关手册, 运动黏度,单位:m2/s,1 m2/s=104St,1.1.3 流体流动中的机械能,机械能包括动能、位能和压强能。,流体所含的能量:内能和机械能,1.2 流体静力学及其应用,1.2.1 流体的密度 1.2.2 压强及其表示方法 1.2.3 流体静力学方程 1.2.4 流体静力学方程的应用,1.2.1 流体的密度,一、定义 单位体积流体的质量,称为
12、流体的密度。,二、单组分密度,液体 密度仅随温度变化(极高压力除外),其 变化关系可从手册中查得。,气体 当压力不太高、温度不太低时,可按理想 气体状态方程计算:,注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。,三、混合物的密度,混合气体 各组分在混合前后质量不变,则有,气体混合物中各组分的体积分率。,或,混合气体的平均摩尔质量,气体混合物中各组分的摩尔(体积)分率。,一、压强:流体垂直作用于单位面积上的力,称为流体的静压强,习惯上又称为压力。,二、压力的单位 N/m2或Pa,1atm=101.3kPa=0.1013MPa1atm=1.033kg(f)/
13、cm21atm=10.33mH2O=760mmHg1bar=105Pa1psi=6.89kPa,1.2.2 压强,三、 压强的表示方法,绝对压强 以绝对真空为基准测得的压强。 表压 以大气压为基准测得的压强。,表压绝压大气压力,0 正表压,0 负表压,真空度大气压力绝压,表 压 = 绝对压力 大气压力真空度 = 大气压力 绝对压力,1.2.3 流体静力学方程,一、流体微元的受力平衡研究对象:静止流体中的一立方体流体微元六面体,受力分析:质量力与表面力X、Y、Z单位质量流体在X、Y、Z方向的分量 x方向:,同理,y方向:,z方向:,欧拉平衡方程,单位质量流体所受的体积力,单位质量流体所受的压力,
14、将该微元流体移动dl距离,此距离对x、y、z轴的分量为dx,dy,dz,乘以dx,乘以dy,乘以dz,压力所作功,质量力所作功,流体平衡的一般表达式,二、平衡方程在重力场中的应用,重力场,离心场,讨论,1不可压缩流体,虚拟压强,压力形式,能量形式,静力学基本方程,(1)适用于重力场中静止、连续的同种不可压缩性流体;(2)物理意义:,单位质量流体所具有的位能,J/kg;,单位质量流体所具有的静压能,J/kg。,在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变 。,(3)在静止的、连续的同种流体内,处于同一水平面上各点的压力处处相等。压力相等的面称为等压面。
15、(4)压力具有传递性:液面上方压力变化时,液体内部各点的压力也将发生相应的变化。,2. 可压缩流体(以气压方程的推导为例),1.2.3静力学基本方程的应用,1. 压力及压力差的测量,(1)U形压差计,若被测流体是气体,所以,讨论:,(1)U形压差计可测系统内两点的压力差,当将U形管一端与被测点连接、另一端与大气相通时,也可测得流体的表压或真空度;,表压,真空度,指示液与被测流体不互溶,不发生化学反应; 其密度要大于被测流体密度。应根据被测流体的种类及压差的大小选择指示液。,(3) 总势能大的一侧指示液液位低。,(2)指示液的选取,(2)双液体U管压差计,扩大室内径与U管内径之比应大于10 。,
16、密度接近但不互溶的两种指示液A和B;,适用于压差较小的场合。,(3) 倒U形压差计,指示剂密度小于被测流体密度,如空气作为指示剂,(5) 复式压差计,(4) 倾斜式压差计,适用于压差较小的情况。,适用于压差较大的情况。,例 如附图所示,水在水平管道内流动。为测量流体在某截面处的压力,直接在该处连接一U形压差计,指示液为水银,读数R250mm,m900mm。,已知当地大气压为101.3kPa,水的密度1 000kg/m3,水银的密度13 600kg/m3。试计算该截面处的压力。,解:,例 如附图所示,蒸汽锅炉上装一复式压力计,指示液为水银,两U形压差计间充满水。相对于某一基准面,各指示液界面高度
17、分别为,Z0=2.1m, Z2=0.9m, Z4=2.0m, Z6=0.7m, Z7=2.5m。 试计算锅炉内水面上方的蒸汽压力。,2. 液位测量,(1)近距离液位测量装置,压差计读数R反映出容器内的液面高度。,液面越高,h越小,压差计读数R越小;当液面达到最高时,h为零,R亦为零。,(2)远距离液位测量装置,管道中充满氮气,其密度较小,近似认为,而,所以,3. 液封高度的计算,确保设备安全:当设备内压力超过规定值时,气体从液封管排出; 防止气柜内气体泄漏。,液封高度:,液封作用:,1.3 流体流动中的守恒原理,1.3.1 质量守恒原理 1.3.2 机械能守恒(伯努利方程) 1.3.3 动量守
18、恒(不讲),1.3.1 质量守恒原理,一、流速与流量 1. 流量, 含义:单位时间流过管道任一截面的物质量。, 体积流量 :单位时间内流体流过管道任一截面的体积. qVm3/s或m3/h, 换算关系:qmqv, 质量流量 :单位时间内流体流过管道任一截面的质量. qmkg/s或kg/h,2、流速, 点速度单位时间内流体质点在流动方向上所流经的距离。 平均流速,体积流量相等, 质量流速 单位时间内流经管道单位截面积的流体质量。,kg/(m2s),流量与流速的关系:,对于圆形管道,流量qV一般由生产任务决定。,流速选择:,二、管径的估算,常用流体适宜流速范围:,水及一般液体 13 m/s粘度较大的
19、液体 0.51 m/s低压气体 815 m/s压力较高的气体 1525 m/s,三、连续性方程的推导,前提: 定态流动系统;管路中流体无增加和漏损。,推广至任意截面,连续性方程,讨论1. 导出条件:流体充满全管; 定态流动。,流体在均匀直管内作定态流动时,平均流速沿流程保持定值,并不因内摩擦而减速!,2.均质、不可压缩流体, =常数,3.均质、不可压缩流体在圆管内流动,4. 管路有分支,例 如附图所示,管路由一段89mm4mm的管1、一段108mm4mm的管2和两段57mm3.5mm的分支管3a及3b连接而成。若水以910-3m3/s的体积流量流动,且在两段分支管内的流量相等,试求水在各段管内
20、的速度。,解: 管1的内径,水在管1中的流速,管2的内径,水在管2中的流速,管3a及3b的内径,水在分支管路3a、3b中的流量相等,水在管3a和3b中的流速,1.3.2 定态流动系统的机械能守恒(伯努利方程),1.总能量衡算,(1)内能 贮存于物质内部的能量。 1kg流体具有的内能为U(J/kg)。,衡算范围:1-1、2-2截面以及管内壁所围成 的空间衡算基准:1kg流体位能基准面:0-0水平面,(2)位能 流体受重力作用在不同高度所具有的能量。 1kg的流体所具有的位能为gz(J/kg)。,能量分析:,(3)动能1kg的流体所具有的动能,(4)静压能,流体带入系统的静压能,1kg的流体所具有
21、的静压能,(J/kg),(5)热设换热器向1kg流体提供的热量为qe (J/kg)。,质量为m、体积为V的流体通过截面A,推进流体进截面A的作用力为pA流体通过截面A所走的距离为V/A,,(6)外功(有效功) 1kg流体从流体输送机械所获得的能量为he (J/kg)。,以上能量形式可分为两类:,机械能:位能、动能、静压能及外功,可用于输 送流体; 内能与热:不能直接转变为输送流体的能量。,2实际流体的机械能衡算,假设流体不可压缩,则,(1) 以单位质量流体为基准,流动系统无热交换,则,流体温度不变,则,设1kg流体损失的能量为hf(J/kg),有:,式中各项单位为J/kg。,(2)以单位重量流
22、体为基准,(1)/g :,式(2)中各项单位,(3)以单位体积流体为基准,(1),得,式中各项单位:,压力损失,(4) 效率,有效功率,指单位时间内流体从流体输送机械(如泵、风机)获得的机械能,轴功率,指电机输入流体输送设备(如泵、风机)的功率,3理想流体的机械能衡算,理想流体是指流动中没有摩擦阻力的流体。,伯努利方程式,4.伯努利方程的讨论,(1)若流体静止,u=0,hf=0,he=0,则伯努利方程变为,(2)理想流体在流动过程中任意截面上总机械能、总压头为常数,即,(3)伯努利方程式适用于不可压缩性流体。(4)对于可压缩流体,当(p1-p2)/p120% 时,仍可用该方程计算,但式中的密度
23、应以两截面的平均密度m代替。,4伯努利方程的应用,管内流体的流量; 输送设备的功率; 管路中流体的压力; 容器间的相对位置等。,利用伯努利方程与连续性方程,可以确定:,(1)根据题意绘制流动系统示意图标明流体的流动方向,定出上、下游截面,明确流动系统的衡算范围 ;,(2)选取位能基准面 必须与地面平行; 宜于选取两截面中位置较低的截面; 若截面不是水平面,而是垂直于地面,则基准面应选过管中心线的水平面。,使用步骤:,(4)定压力基准压力表示方法也应一致,即同为绝压或同为表压。,(3)选取截面 与流体的流动方向相垂直; 两截面间流体应是定态连续流动; 截面宜选在已知量多、计算方便处。,例 容器间
24、相对位置的计算 如附图所示,从高位槽向塔内进料,高位槽中液位恒定,高位槽和塔内的压力均为大气压。送液,管为452.5mm的钢管,要求送液量为3.6m3/h。设料液在管内的压头损失为1.2m(不包括出口能量损失),试问高位槽的液位要高出进料口多少米?,解:如图所示,取高位槽液面为1-1截面,进料管出口内侧为2-2截面,z1=h ,u10; p1=0(表压);He=0 ; z2=0; p2=0(表压); Hf =1.2m,例 泵输送功率的计算某化工厂用泵将敞口碱液池中的碱液(密度为1100kg/m3)输送至吸收塔顶,经喷嘴喷出,如附图所示。泵的入口管为1084mm的钢管,管中的流速为1.2m/s,
25、出口管为763mm的钢管。贮液池中碱液的深度为1.5m,池底至塔顶喷嘴入口处的垂直距离为20m。碱液流经所有管路的能量损失为30.8J/kg(不包括喷嘴),在喷嘴入口处的压力为29.4kPa(表压)。设泵的效率为60%,试求泵所需的功率。,解:在1-1截面和2-2截面间列柏努利方程,z1=0; p1=0(表压); u10; z2=20-1.5=18.5m; p2=29.4103 Pa(表压);=1100 kg/m3,hf=30.8 J/kg,kW,本节小结,实际流体的机械能守恒式,重点,不可压缩流体的连续性方程,1.4 流体流动的内部结构,1.4.1 流体流动类型与雷诺准数 1.4.2 湍流的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 化工 原理 上册 ppt 课件 第三
链接地址:https://www.31ppt.com/p-1404950.html