病理生理学课件9细胞信号转导与疾病.ppt
《病理生理学课件9细胞信号转导与疾病.ppt》由会员分享,可在线阅读,更多相关《病理生理学课件9细胞信号转导与疾病.ppt(106页珍藏版)》请在三一办公上搜索。
1、病 理 生 理 学,邓松华,PATHOPHYSIOLOGY,安 徽 医 科 大 学 基 础 医学 院 Basic Medical College, Anhui Medical University,细胞信号转导与疾病,一、概念,二、细胞信号转导的主要途径,三、细胞信号转导障碍与疾病,四、病防细胞信号转导调控与疾治,概念:,1、细胞信号转导,细胞通过位于胞膜或胞内的受体感受胞外信息分子的刺激,经复杂的细胞内信号转导系统的转换来影响细胞的生物学功能,这一过程称为细胞信号转导。细胞信号转导由三部分组成:,(1)能接收信号的特定的受体;(2)受体后的信号转导通路(由酶催化一系列有序发生的生化反应,起始
2、信号后参与其中的分子数量增多,出现信号级联,使弱刺激渐增强-信号放大);(3)信号的生物学效应。,2、跨膜信号转导,胞外信息分子两类:一类能穿过细胞膜(如大多数脂溶性信息分子);另一类不能穿过细胞膜(如水溶性信息分子)。不能穿过细胞膜的信息分子必须与膜受体结合才能进一步激活细胞内的信息分子,也就是要先把胞外信号转变为胞内信号,,然后启动细胞内的信号传递系统,经过信号转导的级联反应将细胞外的信息传递至胞浆或核内,进而调节靶细胞的功能。由于这一过程必须有膜受体的参与,且将信息分子的刺激由膜外传至膜内,称为跨膜信号转导。,细胞表面受体: 胞外结构域,跨膜结构域,胞内结构域离子通道受体 电压依赖性 受
3、体操(配体门)控性 GABA受体 5-HT受体 谷氨酸/门冬氨酸受体G蛋白耦联受体 肾上腺素能 趋化因子受体跨膜受体 表皮生长因子 血小板源性生长因子受体等 受体型酪氨酸蛋白激酶是跨膜受体典型代表,细胞信号转导的主要途径,一、G蛋白介导的细胞信号转导途径,G蛋白质是一组可与鸟嘌呤核苷酸可逆性结合,位于细胞膜浆面的外周蛋白,分两类由三个亚基组成三聚体,在膜受体与效应器之间的信号转导中起中介作用;小分子G蛋白,只具有G蛋白亚基的功能,在细胞内进行信号转导。,G蛋白偶联受体为只含一条肽链的糖蛋白,N端在细胞外侧,C端在细胞内侧,中段形成七个跨膜结构和三个细胞外环和内环,浆面第三个环能与鸟苷酸结合蛋白
4、(guanylate binding protein)G蛋白相偶联,当受体被激活时,G上GDP为GTP取代 GTP-Ga和G 影响酶活性 第二信使 蛋白激酶 生物效应。,lG蛋白是跨膜信号转导的分子开关,Ga又分Gs、 Gi、 Gq与G12, Gs、 Gi通过增加或抑制AC活性来调节细胞内cAMP浓度来影响PKA调节细胞功能,胰高血糖素,肾上腺素能,ACTH,受体激活 催化 Gs的GDP与GTP交,换 s- GTP AC ATP cAMP,r复合体(与亚基拮抗),(一)腺苷酸环化酶信号通路,1、通过刺激或抑制型G蛋白,2肾上腺素能,M2胆碱能,生长激素抑制素,胰岛素,受体激活则与Gi偶联,抑制
5、Ac活性,降低细 胞内cAMP水平,cAMP是重要的第二信使,其对细胞的调节作用是激活蛋白激酶A, PKA来实现的。,2、通过抑制型G蛋白,PKA是一种由四聚体(C2R2)组成的别构酶。其中C为催化亚基,R为调节亚基。每个调节亚基有2个cAMP结合位点,催化亚基具有催化底物蛋白质某些特定丝/苏氨酸残基磷酸化的功能。调节亚基与催化亚基结合时,PKA呈无活性状态。当4分子cAMP与2个调节亚基结合后,调节亚基脱落,游离的催化亚基具有蛋白激酶活性,其过程需要Mg+。,cAMP 激活 PKA,多种蛋白质丝/苏氨酸磷酸化从而调节细胞物质代谢,CREP的丝/苏AA磷酸化 +DNA上CRE,靶基因转录,核内
6、组Pr、酸性Pr、胞浆内核蛋白体Pr、微管Pr受体蛋白磷酸化,影响其功能,CRE:cAMP反应元件CREP :cAMP反应元件结合蛋白,(二)通过Gq激活磷脂酶C信号通路,近年来的研究表明,体内的跨膜信息传递方式中还有一种以三磷酸肌醇(肌醇-1,4,5三磷酸,IP3)和二脂酰甘油(DAG)为第二信使的双信号途径。G蛋白偶联受体可激活一条由磷酸酯酶C-(PLC-)介导的通路。该系统可以单独调节细胞内的许多反应,又可以与cAMP-蛋白激酶系统及酪氨酸蛋白激酶系统相偶联,组成复杂的网络,共同调节细胞的代谢和基因表达。,促甲状腺素释放素,去甲肾素、ADH,内皮素、II,受体激活 + 特定G蛋白(Gq)
7、,(+)浆膜上磷酯酶C亚基(PLC) 催化 磷脂酰肌醇,二磷酸(PIP2 ) 三磷酸肌醇(IP3),甘油二脂(DAG),lIP3水溶性小分子可激活平滑肌和心肌内质网/肌浆网钙通道的IP3受体,促进内质网,肌浆网释Ca+ , 胞浆钙增高;与PKC结合,在DAG和膜磷脂共同诱导PKC的激活,IP3通路:,DAG通路:,DAG与Ca+ 能协调促进PKC激活,PKC激活 靶蛋白丝/苏AA磷酸化 调节多种,生理活动 H外流 (Na/H交换Pr磷酸化),Ca+通道磷酸化 激活电压依赖性钙通通道 Ca+内流,转录因子(ap-1,NF-kB)磷酸化靶基因转录细胞增殖,Ca+作为第二信使启动多种细胞反应,钙通路
8、:,(+) 细胞胰岛素,触发肌收缩,与钙调蛋白结合(+)Ca+ -CaM激酶,Ca+-钙调蛋白依赖性蛋白激酶通路: (Ca+-CaMK),钙调蛋白为钙结合蛋白,是细胞内重要的调节蛋白。CaM是一条多肽链组成的单体蛋白。人体的CaM有4个Ca+结合位点, Ca+与CaM结合,其构象发生改变而激活Ca+-CaM-K。,Ca+-CaM可以磷酸化许多蛋白质的丝/苏氨酸残基,使之激活或失活。Ca+-CaM激酶既能激活腺苷酸环化酶又能激活磷酸二酯酶,即它既加速cAMP的生成又加速cAMP的降解,使信息迅速传至细胞内,又迅速消失,不仅参与调节PKA的激活和抑制,还能激活胰岛素受体的酪氨酸蛋白激酶活性,在细胞
9、的信息传递中起非常重要的作用。,总之:PKC通过对靶蛋白的磷酸化反应而改变功能蛋白的活性和性质,影响细胞内信息的传递,调节细胞功能。 PKC对基因的活化过程可分为早期反应和晚期反应两个阶段。PKC能使立早基因(immediate-early gene)的反式作用因子 磷酸化,加速立早基因的表达。,立早基因多数为细胞原癌基因(c-fos, AP1/c-jun)它们表达的蛋白质寿命短暂(半衰期为12小时)具有跨越核膜传递信息之功能,因此称为第三信使。第三信使受磷酸化修饰后,最终活化晚期反应基因并导致细胞增生或核型变化。,(三)G蛋白其他磷脂酶途径,激活磷脂酶A2AA (PG、白三烯),激活磷脂酶磷
10、脂酸 (胞内脂质第二信使) 胆碱,(四)PI-3-PKB(磷酯酰肌醇)途径,可被G蛋白和小G蛋白激活(见后),(五)离子通道途径,多种G蛋白耦联受体同配体结合后能直接或间接地调节离子通道活性,参与神经、心血管功能调节。,二、酪氨酸蛋白激酶介导的信号转导途径,TPK在细胞的生长、增殖、分化过程中起重要调节作用,并与肿瘤的发生有密切的关系。细胞的TPK包括两大类:位于细胞膜上为受体型TPK,如胰岛素受体、表皮生长因子受体及某些原癌基因编码的受体,它们均属于催化型受体;位于胞浆中为非受体型TPK,如底物酶JAK(just another kinase,另一类激酶)和某些原癌基因(src,yes等)编
11、码的TPK,它们常与非催化型受体偶联而发挥作用。,细胞内存在一些连接物蛋白(adaptor protein),它们具有SH2结构域,这些结构域与原癌基因src编码的酪氨酸蛋白激酶区同源。SH2结构域能识别磷酸化的酪氨酸残基并与之结合。磷酸化的受体通过连接物蛋白可偶联其他效应蛋白,这些效应物蛋白本身具酶活性,故可逐级传递信息并将效应级联放大 非催化型受体酪氨酸残基则被非受体型TPK磷酸化,(一)受体型TPK途径,1、经Ras蛋白激活的丝裂原活化蛋白激酶(TPK-Ras-MAPK)途径催化型受体与配体结合后,发生自身磷酸化并磷酸化中介分子Grb2和SOS,使其活化,进而激活ras蛋白。由于ras蛋
12、白为多种 生长因子信息传递过程所共有,因此又称为Ras通路。,在哺乳动物 已克隆出4个MAPK亚族:细胞外信号调节激酶ERK, 大丝裂原活化蛋白激酶BMK, c-JUN N端蛋白激酶JNK/应激激活的蛋白激酶SAPK, p38 MAPK,Ras蛋白是由一条多肽链组成的单体蛋白,由原癌基因ras编码而得名。它的性质类似于G蛋白中的Ga亚基,它的活性与其结合GTP或GDP直接有关,Ras与GDP结合时无活性,但磷酸化的SOS可促进GDP从Ras脱落,使Ras转变成GTP结合状态而活化。Ras蛋白的分子量为21KD,故又名p21蛋白,因其分子量小于与七个跨膜受体偶联的G蛋白,也被称作小G蛋白。活化的
13、Ras蛋白可进一步活化Raf蛋白。,Raf蛋白具有丝/苏氨酸蛋白激酶的活性,它可激活有丝分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)系统。导致细胞外信号调节激酶(ERK)、或c-jun N端粒酶(JNK)/应激激活的蛋白激酶(SAPK)激活,激活的ERK可促进胞浆靶蛋白磷酸化或调节其蛋白激酶的活性,更重要的是激活的ERK可进入核内,促进多种转录因子磷酸化,增强转录活性。,(生长因子等可激活ERK,激活JNK/SAPK p38MAPK主要是应激原和促炎细胞因子),2、经磷脂酶C激活蛋白激酶C,受体TPK的磷酸化酪氨酸与含SH2区结构域的PLC
14、结合并活化PLC,水解PIP2 生成 IP3和DAG,PKC调节细胞活动。,3、激活磷脂酰肌醇3激酶(PI3K),PI3K由调节、催化二亚单位组成二聚体,可被G蛋白激活,其催化亚单位可使磷脂酰肌醇的羟基磷酸化,其产物PIP2激活PDK,PDK再激活PKB,在胰岛素调节糖代谢起重要作用,并在细胞存活、抗凋亡及代谢中发挥重要作用.,4、受体TPK 激活 AC cAMPPKA活化,靶蛋白磷酸化,靶基因转录,调控细胞功能,(二)非受体TPK途径,IFN、EPO、IL-2、IL-6、G-CSF等受体无 TPK活性,借助胞内一类具激酶结构的连 接蛋白JAKS(janus kinase)完成信息转导,JAK
15、s家族分子内均有SH2结构域,配体 + 非催化型受体 (+)各自的JAKs并与其结合 激 活 信号转导子和转录激活因子(Signal transducers and activators of transcription,STAT)并结合。在JAK催化下,STAT中酪氨酸磷酸化,结合成STAT二聚体移入核内 基因的转录调节,故又称JAK-STAT信号通路。在JAK-STAT通路中,激活后的受体可与不同的JAKs和不同的STAT相结合,故该途径传递信号更具多样性和灵活性。,三、受体丝/ 苏氨酸激酶,转化生长因子-(TGF-)+受体(含丝/苏氨酸激酶域),磷酸化基因调控因子(Smad),启动基因表
16、达,靶基因转录。,+Smad 细胞核 DNA特定位点,该受体家族有近20个成员,配体包括TGF-,活化素家族、骨形发生蛋白家族等。可调节细胞生长分化及激活细胞凋亡。,四、鸟苷酸环化酶信号转导途径,GC激活过程与AC不同,GC的激活间接依赖Ca+。Ca+通过激活磷脂酶C和磷脂酶A2使膜磷脂水解成花生四烯酸,再成生前列腺素而激活GC。,l激素 + 受体 激活 GC GTP cGMP 激活 PKG 有关酶类,丝/苏氨酸磷酸化生物效应,PKG为一单体酶,分子中有一个cGMP结合位点。NO作为神经信息物质在平滑肌细胞中可激活GC, 导致血管平滑 肌松弛,临床硝酸甘油可自发产生NO,松弛血管平滑肌,使血管
17、扩张.,五、肿瘤坏死因子受体途径,TNF受体家族至少12个成员,为I型膜蛋白,TNF受体家族中的Fas蛋白(膜受体)可与淋巴细胞表面Fas配体(Fas ligand或CD95)结合诱导细胞凋亡。 TNF被称为死亡因子(death factor), 介导它们诱导凋亡作用的受体被称为死亡受体(DR)。激活的受体通过与多种具有死亡域的受体连接蛋白结合,形成死亡诱导信号复合体(DISC),同时激活caspase级联反应,诱发细胞凋亡。,TNFa与受体结合还能激活多种磷脂酶PLC、PLD,PLA2等,并可激活转录因子NFB,保护细胞免于凋亡.,六、核受体及其信号转导途径,一些脂溶性胞外信号如类固醇激素能
18、弥散进入胞内,核内受体结合,在核内启动信号转导并影响基因转录,称为核受体。,型核受体定位在胞浆或胞核穿梭型核受体定位在胞核,1、类固醇受体家族 目前已知通过核受体调节的激素有糖、盐皮质激素,雄、雌、孕激素,甲状腺素,1.25(OH)2D3等,除甲状腺素外均为类固醇化合物,胞内受体又可分核内受体和胞浆内受体。,胞浆受体未与配体结合前与HSP结合,处非活化状态,配体与受体结合后,移入核内与激素反应元件(HRE)结合,增强或抑制靶基因转录,2、甲状腺素受体家族(甲状腺素、VitD、维 甲酸受体) 受体位于核内(与共遏蛋白结合),配体入核激活受体(共遏蛋白脱落),以同源或异源二聚体形式与靶基因中的HR
19、E结合,募集RNA聚合酶、共激因子等促进基因转录。,细胞信号转导障碍与疾病,信息传递系统是一个十分复杂的网络,在每个层次上都受到严密的调控,控制细胞几乎所有生命活动,其中任何一环节发生障碍,都会影响细胞功能代谢而造成疾病.,细胞信号通路异常 信号起始环节异常 配体与受体数量和功能 信号中继环节 G蛋白异常 信号效应环节 信号靶分子功能失调 信号终止环节信号转导与炎症信号转导与糖尿病肿瘤发生与转导异常,一、受体异常与疾病,受体下调或减敏下调为受体数量减少,减敏为对配体刺激的反应性减弱或消失。,受体上调或增敏靶细胞对配体刺 激反应过度,编码受体基因突变,受体数量改变,受体功能异常,发生在生殖细胞遗
20、传性受体病发生在体细胞与肿瘤有关,(一)遗传性受体病编码受体的基因突变使受体缺失、结构异常或功能改变而引起的疾病,(1)、家族性高胆固醇血症(FH),常染色体显性遗传,基因突变至低密度脂蛋白(LDL)受体缺失,数量减少或功能常,对LDL清除下降,血浆LDL增高,易发生动脉粥样硬化。,、受体缺陷导致疾病,正常时在肝细胞及肝外组织的细胞膜表面广泛存在着低密度脂蛋白(LDL)受体,它能与血浆中富含胆固醇的LDL颗粒相结合,并经受体介导的内吞作用进入细胞。在细胞内受体与LDL解离,再回到细胞膜,而LDL则在溶酶体内降解并释放出胆固醇,供给细胞代谢需要并降低血浆胆固醇含量。,纯合子FH编码受体的等位基因
21、均缺陷,LDL可高于正常6倍,儿童期可出现冠脉狭窄,20岁前可死亡。,杂合子FH编码LDL受体的单个基因缺陷,患者LDL受体量为正常人的一半,血浆LDL含量约为正常人的2-3倍,常于40-50岁出现冠心病。,按LDL受体突变类型分:,(1)受体合成障碍不能编码正常受体 蛋白,受体数量下降,(2)受体转运障碍转运信号的基因突 变,影响受体翻译后加工过程,使受 体前体成熟障碍,转移到胞膜的受体 量减少,(3)受体与配体结合障碍受体与配体 结合区的碱基缺失或点突变,缺陷的 受体不能与配体结合,(4)体内吞缺陷受体与LDL受体结 合后不能聚集并内吞入细胞,(2)家族性肾性尿崩(肾小管对ADH反应低下为
22、肾性尿崩,中枢性尿崩症是由于ADH分泌减少,由遗传性ADH受体异常为家族性肾性尿崩,患者血ADH水平正常但表现出该激素缺少症状,是ADH受体减少或缺陷以至ADH不能发挥作用),编码ADH受体基因位于X染色体,故为X连锁遗传,机制涉及传导通路为cAMP途径,基因突变使ADH受体合成减少或胞外环结构异常 ADH对远曲小管集合管刺激作用下降,患者口渴、多饮、多尿等,多在1岁内发病。,(3)、甲状腺素抵抗综合征靶细胞对激素反应低下或丧失而引起的一系列病理变化,编码型受体的基因突变有缺陷的受体不能与T3结合,外周组织对甲状腺素抵抗,临床上相应激素反应减弱,甲状腺机能低下,但循环血中该激素水平升高,可影响
23、生长发育。,、受体过度激活所致疾病,促甲状腺素受体(TSHR)激活型突变, TSHR+TSH甲状腺增殖,甲状腺素过度分泌,甲亢,激活Gs-AC-cAMP-PKA通路,激活Gq-PLC-DAG-PKC通路,(二)自身免疫性受体病体内产生抗受体 的自身抗体引起的疾病,刺激型抗体细胞对配体的反应增强 阻断型抗体干扰配体与受体结合, 靶细胞反应低下,1、重症肌无力,患者产生抗Ach受体抗体(胸腺上皮及淋巴细胞有n-Ach受体结构相似物质机体产生抗Ach受体抗体),抗n-Ach受体抗体通过干扰Ach与受体的结合,导致运动神经未梢释放的Ach不能充分与运动终板上的n-Ach受体结合,使兴奋不能正常传递影响
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 病理 生理学 课件 细胞 信号 转导 疾病
链接地址:https://www.31ppt.com/p-1394905.html