《一元二次方程》PPT优秀课件.pptx
《《一元二次方程》PPT优秀课件.pptx》由会员分享,可在线阅读,更多相关《《一元二次方程》PPT优秀课件.pptx(21页珍藏版)》请在三一办公上搜索。
1、一元二次方程,?,问题情景(1),问题(1) 有一块矩形铁皮,长100,宽50,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的方盒的底面积为3600平方厘米,那么铁皮各角应切去多大的正方形?,100,50,x,3600,分析:,设切去的正方形的边长为xcm,则盒底的长为 ,宽为 .,(100-2x)cm,(50-2x)cm,根据方盒的底面积为3600cm2,得,即,?,问题(2) 要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?,问题情景(2),分析:,全部比
2、赛共,47=28场,设应邀请x个队参赛,每个队要与其他 个队各赛1场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共 场.,(x-1),即,一块四周镶有宽度相等的花边的地毯如下图,它的长为m,宽为m如果地毯中央长方形图案的面积为m2 ,则花边多宽?,你怎么解决这个问题?,问题情景(3),解:如果设花边的宽为xm ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:,(82x),(52x),(8 2x) (5 2x) = 18.,5,x,x,x,x,(82x),(52x),8,18m2,问题情景(3),x,8m,1,10m,7m,6m,解:由勾股定理可知,滑动前
3、梯 子底端距墙m,如果设梯子底端滑动X m,那么滑 动后梯子底端距墙m,根据题意,可得方程:,72(X6)2102,6,X6,如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?,10m,问题情景(4),由上面四个问题,我们可以得到四个方程:,(8-2x)(5-2x)=18;,即 2x2 13x 11 = 0 .,(x)22102,即 x2 12 x 15 0.,上述四个方程有什么共同特点?与我们以前学过的一元一次方程和分式方程有什么区别?,特点:,都是整式方程;,只含一个未知数;,未知数的最高次数是2.,1、上面四个方程整理
4、后含有 _未知数,它们的最高次数 是 _ ,等号两边是 _ 式。,2、和以前所学的方程比较它们叫什么方程? 请定义。,一个,2,整,一元二次方程的概念,像这样的等号两边都是整式, 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程。, 都是整式方程;, 只含一个未知数;,未知数的最高次数是2.,即:一元二次方程的共同特点:,一元二次方程的一般形式,一般地,任何一个关于x 的一元二次方程都可以化为 的形式,我们把(a,b,c为常数,a0)称为一元二次方程的一般形式。,为什么要限制a0,b,c可以为零吗?,想一想,a x 2 + b x + c = 0,(a 0),二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元二次方程 一元 二次方程 PPT 优秀 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1377739.html