蛋白质的二级结构ppt课件.ppt
《蛋白质的二级结构ppt课件.ppt》由会员分享,可在线阅读,更多相关《蛋白质的二级结构ppt课件.ppt(139页珍藏版)》请在三一办公上搜索。
1、,蛋白质的二级结构The Secondary Structure of Protein,蛋白质构象研究的开创人鲍林(Pauling)和科里(Corey)在30年代后期的研究中提出了一个重要的结论: 即蛋白质肽单位的刚性和共面性。,如图所示。1、肽单位中碳基碳原子和氮原子之间所成的键(肽键)的键长为0.32nm。这个键长介于单键CN(0.149nm)和双键C=N(0.127间,具有部分双键的性质,是刚性的。2、相反,-碳原子与羰基碳原子之间是单键,因此。-碳原子与氮原于之间也是一个纯粹的单键,因此,在刚性的肽单位两侧的这些键具有充分转动自由。围绕这两个键进行的转动用角和来代表。代表绕C一C单链的
2、转动;代表绕C-N单链的转动。如果每一个氨基酸残基的和已知,多肽主链的构象就完全确定。,二面角(dihedral angle),肽平面1 围绕 C2N1 单键旋转,其旋转的角度用表示; 肽平面2 也可以围绕 C2C2 单键旋转,其旋转的角度用表示。,多肽链主链骨架的构象是由每个C的成对二面角(,)所决定的。 非键合原子间的最小接触距离 在相邻的两个肽单位的构象中,非键合原子间的接近有无障碍,是否符合标准接触距离,即能量是否达到最低,也是肽链构象能否稳定存在的重要立体化学原则。,Kaj Ulrik Linderstrm-Lang (November 29, 1896 - May 25, 1959
3、) was a Danish protein scientist, who was the director of the Carlsberg Laboratory (嘉士伯实验室)from 1939 until his death.His most notable scientific contributions were:the development of sundry physical techniques to study protein structure and function ,especially (氢-氘置换)hydrogen-deuterium exchange,his
4、 definitions of protein primary, secondary, tertiary and quaternary structure.,In the early 1930s, William Astbury showed that there were drastic changes in the X-ray fiber diffraction of moist wool or hair fibers upon significant stretching. The data suggested that the unstretched fibers had a coil
5、ed molecular structure with a characteristic repeat of 5.1 (= 0.51 nm).,Astbury initially proposed a kinked-chain structure for the fibers. He later joined other researchers (notably the American chemist Maurice Huggins) in proposing that:the unstretched protein molecules formed a helix (which he ca
6、lled the -form); and the stretching caused the helix to uncoil, forming an extended state (which he called the -form).,Linus Pauling, Robert Corey and Herman Branson in 1951 developed the -helix and the -strand (Astburys nomenclature was kept),The wooden helix between Pauling and Corey has a scale o
7、f 1 inch per , an enlargement of 254,000,000 times. (A) Courtesy of the Archives, California Institute of Technology.(B) Courtesy of the Lincoln University of Pennsylvania Archives.,Linus Pauling, Robert Corey and Herman Branson in 1951 developed the -helix and the -strand (Astburys nomenclature was
8、 kept)Linus Pauling and Robert Corey (A) and Herman Branson (B). Paulings deep understanding of chemical structure and bonding, his retentive memory for details, and his creative flair were all factors in in the discovery of the -helix. Robert Corey was a dignified and shy x-ray crystallographer wit
9、h the know-how and patience to work out difficult structures, providing Pauling with the fundamental information he needed. Herman Branson was a physicist on leave at the California Institute of Technology, who was directed by Pauling to find all helices consistent with the rules of structural chemi
10、stry that he and Corey had determined.,Reverse Turns回折:环型Science 14 November 1986:Vol. 234. no. 4778, pp. 849 - 855 Jacquelyn Leszczynski and George D. RoseLoops in globular proteins: a novel category of secondary structureThe protein loop, a novel category of nonregular secondary structure, is a se
11、gment of contiguous polypeptide chain that traces a loop-shaped path in three-dimensional space; the main chain of an idealized loop resembles a Greek omega (omega). A systematic study was made of 67 proteins of known structure revealing 270 omega loops. Although such loops are typically regarded as
12、 random coil, they are, in fact, highly compact substructures and may also be independent folding units. Loops are almost invariably situated at the protein surface where they are poised to assume important roles in molecular function and biological recognition. They are often observed to be modules
13、 of evolutionary exchange and are also natural candidates for bioengineering studies.,蛋白质的二级结构是蛋白质中肽链骨架中局部肽段的稳定构象。 它们是完整肽链构象(三级结构)的结构单元,是蛋白质复杂结构的空间构象的基础构象单元,1、regular规正的二级结构包括-螺旋(-helix)和其他形式的螺旋、-折叠链(-pleated strand)2、partially regular部分规正的二级结构 转角reverse turn,环型(-loops)3、nonregular-“无规”卷曲,1、规正的二级结构形
14、成的原因:(1) Peptide bond 能转动 Peptide bond 平面(2) 一个氨基酸R 基团与前后R 基团的限制 Peptide bond 平面能任意转动(3) R 基团的大小、电荷限制 只做规折迭 Helix, Sheet Ramachandron plot(4) 稳定二级构造的: 氢键,-helix,-sheet,-螺旋 Pauling 和Corey于1951 年提出蛋白质的-螺旋(-helix)结构模型。,-螺旋,-螺旋, -Helix(螺旋)结构要点:(1) Right handed (右手旋)(2) 每3.6氨基酸绕一圈,每圈5.4 高(3) Carbonyl (C=
15、O) 与下游H-N- 生成氢键(4) 每个氢键以13 个原子夹着(13)(5) 氢键与螺旋长轴基本平行。(6) 整个-helix 呈圆筒状,且有偶极性(7)肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响-螺旋的形成。,-螺旋,有極性,螺旋可随其卷曲的松紧而有所改变。这种改变是由于第n个残基与第n+5个或第n+3个残基的氢键,取代了第n个残基与第n+4个残基的氢键。,310 helix 310螺旋每圈含三个残基,在氢键的供体和受体之间有十个原子,由此而得名。 The amino acids in a 310-helix are arranged in a right-handed h
16、elical structure. Each amino acid corresponds to a 120 turn in the helix (i.e., the helix has three residues per turn), and a translation of 2.0 (= 0.2nm) along the helical axis. Most importantly, the N-H group of an amino acid forms a hydrogen bond with the C=O group of the amino acid three residue
17、s earlier; this repeated i+3i hydrogen bonding defines a 310-helix.,310 helix聚丙氨酸的“棒” 状310-螺旋侧视图,反角 (dihedral angles) =-49和=-26 the O-H distance is 1.83 (183 pm). 氢键,310 helix顶视图(Top view) of the same helix shown to the right. Three carbonyl groups are pointing upwards towards the viewer, spaced rou
18、ghly 120 apart on the circle, corresponding to 3.0 amino-acid residues per turn of the helix.,-helix标准的-螺旋是一个右手螺旋,每一个氨基酸残基在螺旋内旋转87,每个螺旋有4.1个氨基酸残基,第n个残基的N-H与第n+5个残基的C=O形成氢键,形成一个-螺旋。The amino acids in a standard -helix are arranged in a right-handed helical structure. Each amino acid corresponds to a
19、87 turn in the helix (i.e., the helix has 4.1 residues per turn), and a translation of 1.15 (=0.115 nm) along the helical axis. Most importantly, the N-H group of an amino acid forms a hydrogen bond with the C=O group of the amino acid five residues earlier; this repeated i+5i hydrogen bonding defin
20、es a -helix., helixClose-up sideview of a stick model of a pi helix of poly-alanine using the dihedral angles =-55 and =-70 and the Engh the O-H distance is 1.65 (165 pm)., helixTop view of the same helix shown above. Four carbonyl groups are pointing upwards towards the viewer, spaced roughly 87 ap
21、art on the circle, corresponding to 4.1 amino-acid residues per turn of the helix.,螺旋和310螺旋很少见,常存在于螺旋的末端,或者只有一圈。它们在能量上均是不利的,因为在310螺旋中骨架原子安排得太紧,而在螺旋中则太松,其中间有一个孔。只有在螺旋中,骨架原子排列得最合适,能给出一种稳定的结构。,在球状蛋白质中,螺旋的长度可以有很大的不同,从四五个残基到四十余个残基;平均长度在十个残基左右,相当于三圈。在一段螺旋中,每个残基沿螺旋轴上升0.15nm,与一段平均长度的螺旋从一端到另一端路程上的1.5nm相对应。 在
22、理论上,一段螺旋可以是右手的或是左手的,取决于链的旋转方向。然而对于L-氨基酸,左手的螺旋是不被许可的,因为侧链与C=O基团太靠近了。结果,在蛋白质中观察到的螺旋几乎总是右手的。35个氨基酸构成的短的左手螺旋只是偶尔存在。,在一段螺旋中的所有氢键指向同一方向,因为肽单元是沿着螺旋轴以相同的取向排列的。由于NH基团和C=O基团有不同的极性,导致肽单元有偶极矩,故而偶极矩也沿着螺旋轴排列,(a)一个肽单元的偶极矩。框中的数值给出了肽单元中原子所带电荷的近似的小数值。(b)肽单元的偶极沿着螺旋轴排列,导致螺旋总体上的偶极矩,氨基端带正电,羧基端带负电。在螺旋的每一端,偶极矩的大小约为0.50.7个单
23、位电荷。,可以期望这些电荷能吸引带相反电荷的以及带负电荷的配体,尤其是当它们含有磷酸基团,并常常结合干螺旋的N端时。相比之下,带正电荷的配体结合到C端是很罕见的,可能是因为除偶极效应外,螺旋的N端还带有游离的氨基,它具备有利的几何学,能通过特殊的氢键来安置磷酸基团。这样的配体结合常发生在蛋白质中,为不涉及侧链而只通过主链构象的专一结合提供了一个例子。,(c)一个磷酸基团与一段螺旋的NH端形成氢键。氮原子为蓝色,氧原子为红色,主链碳原子为黑色,磷酸基团为绿色。,在螺旋N端附近存在的带负电的酸性残基(如天冬氨酸)和C端附近存在的带正电的碱性残基(如赖氨酸和精氨酸),由于它们分别与螺旋两端的相反电荷
24、的相互作用,对螺旋的稳定起到重要的作用。比如:鲽鱼血液中的抗冻肽,这类抗冻肽由37个氨基酸残基构成,整条肽链全是螺旋,包含了肽链中的所有残基,这是因为该肽链的N端是天冬氨酸,C端是精氨酸,犹如在螺旋的两端安装了“保护栓”N端被磷酸化同样可以稳定螺旋。,Solution structure of a recombinant type I sculpin antifreeze protein,Solution structure of a recombinant type I sculpin antifreeze protein,-螺旋,肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响-
25、螺旋的形成。1、酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于-螺旋形成;2、较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍-螺旋形成;3、脯氨酸因其碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述螺旋;4、甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。,脯氨酸侧链的最末一个原子结合到主链的氮原子上,形成一个环状结构C-CH2-CH2-CH2-N,以防止氮原子参与到氢键中,也对螺旋的构象造成立体障碍。脯氨酸很适合第一圈螺旋,但如果出现在螺旋中的任何其他位置,常引起明显的弯曲。这种弯曲存在干许多螺旋中,而非仅出现在中间含脯氨酸的少数螺旋中。因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蛋白质 二级 结构 ppt 课件

链接地址:https://www.31ppt.com/p-1371934.html