自用空间几何体的表面积和体积ppt课件.ppt
《自用空间几何体的表面积和体积ppt课件.ppt》由会员分享,可在线阅读,更多相关《自用空间几何体的表面积和体积ppt课件.ppt(109页珍藏版)》请在三一办公上搜索。
1、1.3 简单几何体的表面积和体积,长丰一中:朱磊,1.3.1 柱体、锥体、台体的表面积与体积,1、表面积:几何体表面的面积,2、体积:几何体所占空间的大小。,回忆复习有关概念,1、直棱柱:,2、正棱柱:,3、正棱锥:,4、正棱台:,侧棱和底面垂直的棱柱叫直棱柱,底面是正多边形的直棱柱叫正棱柱,底面是正多边形,顶点在底面的射影是底面中心的棱锥,正棱锥被平行于底面的平面所截,截面和底面之间的部分叫正棱台,作直三棱柱、正三棱锥、正三棱台各一个,找出斜高,斜高的概念,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,,棱柱、棱锥、棱台的表面积,它们的侧面展开图还是平面图形,,计算它们的表面积就是计算它的
2、各个侧面面积和底面面积之和,棱柱的侧面展开图是什么?如何计算它的表面积?,h,正棱柱的侧面展开图,2.棱柱、棱锥、棱台的展开图及表面积求法,把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?,棱锥的侧面展开图是什么?如何计算它的表面积?,正三棱锥的侧面展开图,棱锥的展开图,把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?,正五棱锥的侧面展开图,棱锥的展开图,例1 已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积 ,分析:四面体的展开图是由四个全等的正三角形组成,因为BC=a,,所以:,因此,四面体S-ABC 的表面积,交BC于点D,解:先求 的面积,过点作 ,
3、,典型例题,把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积),正四棱台的侧面展开图,棱台的侧面展开图是什么?如何计算它的表面积?,棱台的展开图,例2:(1)一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;,答:60,(2)正四棱锥底面边长为6 ,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积.,例3:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.,分析:关键是求出斜高,注意图中的直角梯形,O1,O,D,D1,E,思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形
4、与原图 有什么关系?,宽,长方形,圆柱的侧面展开图是矩形,3.圆柱、圆锥、圆台的展开图及表面积求法,圆柱,思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?,扇形,圆锥的侧面展开图是扇形,圆锥,思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形?展开的图形与原图 有什么关系?,扇环,侧,圆台侧面积公式的推导,参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么 ,圆台的侧面展开图是扇环,圆台,圆柱、圆锥、圆台三者的表面积公式之间有什么关系?,例4 如图,一个圆台形花盆盆口直径20 cm,盆底直径为15cm,底部渗水圆孔
5、直径为1.5 cm,盆壁长15cm那么花盆的表面积约是多少平方厘米( 取3.14,结果精确到1 )?,解:由圆台的表面积公式得 花盆的表面积:,答:花盆的表面积约是999 ,典型例题,例5 圆台的上、下底面半径分别为2和4,高为 ,求其侧面展开图扇环所对的圆心角,答:1800,例6:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留),小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键; 2、对应的面积公式,柱体、锥体、台体的表面积,知识小结,圆台,圆柱,圆锥,几何体占有空间部分的大小叫做它的体积,一、体积的概念与公理:,公
6、理1、长方体的体积等于它的长、宽、高的积。,V长方体= abc,推论1 、长方体的体积等于它的底面积s和高h的积。,V长方体= sh,推论2 、正方体的体积等于它的棱长a 的立方。,V正方体= a3,定理1: 柱体(棱柱、圆柱)的体积等于它的底面积 s 和高 h 的积。,V柱体= sh,二:柱体的体积,三:锥体体积,例2:,如图:三棱柱AD1C1-BDC,底面积为S,高为h.,答:可分成棱锥A-D1DC, 棱锥A-D1C1C, 棱锥A-BCD.,问:(1)从A点出发棱柱能分割成几个三棱锥?,3.1锥体(棱锥、圆锥)的体积 (底面积S,高h),注意:三棱锥的顶点和底面可以根据需要变换,四面体的每
7、一个面都可以作为底面,可以用来求点到面的距离,问题:锥体(棱锥、圆锥)的体积,定理如果一个锥体(棱锥、圆锥)的底面 积是,高是,那么它的体积是:,推论:如果圆锥的底面半径是,高是, 那么它的体积是:,锥体 ,圆锥 ,h,x,四.台体的体积,V台体=,上下底面积分别是s/,s,高是h,则,推论:如果圆台的上,下底面半径是r1.r2,高是,那么它的体积是:,圆台 h,五.柱体、锥体、台体的体积公式之间有什么关系?,S为底面面积,h为柱体高,S分别为上、下底面面积,h 为台体高,S为底面面积,h为锥体高,例7 有一堆规格相同的铁制(铁的密度是 )六角螺帽共重5.8kg,已知底面是正六边形,边长为12
8、mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个( 取3.14)?,解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:,答:这堆螺帽大约有252个,典型例题,例8从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥ABCD,求它的体积是正方体体积的几分之几?,1 球的概念和性质,2球的体积,3 球的表面积,4 例题讲解,5 课堂练习,6 课堂小结,7 课堂作业,球,球的概念和性质,球的概念,A,B,O,R,C,一,如图所示,半圆以它的直径为旋转轴,旋转所成的曲面叫做球面. 球面所围成的几何体叫做球体,简称球. 半圆的圆心叫球心,图中点O. 连结球心和球面上任意一点的线段叫
9、做球的半径,(图中线段R). 连结球面上两点并且经过球心的线段叫做球的直径,(图中线段AB).,球的概念和性质,球的概念,一,Q,P,O,球面被经过球心的平面截得的圆叫做大圆(如图中红色部分),被不经过球心的截面截得的圆叫做小圆(如图中绿色部分).,球面上两点之间最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点的球面距离(如图中 的长度就是P、Q两点之间的球面距离 ).,球的概念和性质,球的性质,二,d,o1,o2,R,r,用一个平面(如图中平面 )去截一个球,截面是圆面,球的截面有下面的性质:,、球心和截面圆心的连线 垂直于截面(如图直线o1o2垂直于平面 )
10、;,、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:,球的表面积和体积,:,球的表面积,例题讲解,例9、,如图,圆柱的底面直径与高都等于球的直径.求证:,(1) 球的表面积等于 圆柱的侧面积;,(2) 球的表面积等于 圆柱全面积的2/3.,O,R,证明:(1)设球的半径为 R,则圆柱的底面半径 为R,高为2R,得,O,R,例题讲解,(2),例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。,分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。,略解:,变题1.如果球O和这个正方体的
11、六个面都相切,则有S=。变题2.如果球O和这个正方体的各条棱都相切,则有S=。,关键:,找正方体的棱长a与球半径R之间的关系,例10已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=cm,求球的体积,表面积,解:如图,设球O半径为R,截面O的半径为r,,例11、有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比.,作轴截面,习题课,柱、锥、台和球的侧面积和体积,2rl,Sh, r2h, rl,(r1r2)l,Ch,Sh,4 R2,答案: C,解析:设正方体的棱长为a,则a38,a2.而此正方体的内切球直径为2,S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自用 空间 几何体 表面积 体积 ppt 课件
链接地址:https://www.31ppt.com/p-1367569.html