泰勒公式(泰勒中值定理)ppt课件.ppt
《泰勒公式(泰勒中值定理)ppt课件.ppt》由会员分享,可在线阅读,更多相关《泰勒公式(泰勒中值定理)ppt课件.ppt(25页珍藏版)》请在三一办公上搜索。
1、二、几个初等函数的麦克劳林公式,一、泰勒公式的建立,三、泰勒公式的应用,应用,目的用多项式近似表示函数.,理论分析,近似计算,泰勒公式,特点:,一、泰勒公式的建立,以直代曲,在微分应用中已知近似公式 :,需要解决的问题,如何提高精度 ?,如何估计误差 ?,x 的一次多项式,1. 求 n 次近似多项式,要求:,故,令,则,2. 余项估计,令,(称为余项) ,则有,公式 称为 的 n+1 阶泰勒公式 .,公式 称为n+1 阶泰勒公式的拉格朗日余项 .,泰勒(Taylor)中值定理 :,阶的导数 ,时, 有,其中,则当,泰勒,公式 称为n+1 阶泰勒公式的佩亚诺(Peano) 余项 .,在不需要余项
2、的精确表达式时 , 泰勒公式可写为,注意到,特例:,(1) 当 n = 0 时, 泰勒公式变为,(2) 当 n = 1 时, 泰勒公式变为,给出拉格朗日中值定理,可见,误差,称为麦克劳林( Maclaurin )公式 .,则有,在泰勒公式中若取,则有误差估计式,若在公式成立的区间上,麦克劳林,由此得近似公式,二、几个初等函数的麦克劳林公式,其中,麦克劳林公式,其中,麦克劳林公式,麦克劳林公式,类似可得,其中,其中,麦克劳林公式,已知,其中,因此可得,麦克劳林公式,三、泰勒公式的应用,1. 在近似计算中的应用,误差,M 为,在包含 0 , x 的某区间上的上界.,例1. 计算无理数 e 的近似值
3、 , 使误差不超过,解: 已知,令 x = 1 , 得,由于,欲使,由计算可知当 n = 9 时上式成立 ,因此,的麦克劳林公式为,2. 利用泰勒公式求极限,例2. 求,解:,由于,用洛必达法则不方便 !,3. 利用泰勒公式证明不等式,例3. 证明,证:,内容小结,1. 泰勒公式,其中余项,当,时为麦克劳林公式 .,2. 常用函数的麦克劳林公式,3. 泰勒公式的应用,(1) 近似计算,(3) 其他应用,求极限 , 证明不等式 等.,(2) 利用多项式逼近函数,例如,泰勒多项式逼近,泰勒多项式逼近,思考与练习,计算,解:,原式,第四节,泰勒 (1685 1731),英国数学家,他早期是牛顿学派最,优秀的代表人物之一 ,重要著作有:,正的和反的增量方法(1715),线性透视论(1719),他在1712 年就得到了现代形式的泰勒公式 .,他是有限差分理论的奠基人 .,麦克劳林 (1698 1746),英国数学家,著作有:,流数论(1742),有机几何学(1720),代数论(1742),在第一本著作中给出了后人以他的名字命名的,麦克劳林级数 .,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 泰勒 公式 中值 定理 ppt 课件
链接地址:https://www.31ppt.com/p-1359725.html