线性代数第一章线性方程组与矩阵重点ppt课件.ppt
《线性代数第一章线性方程组与矩阵重点ppt课件.ppt》由会员分享,可在线阅读,更多相关《线性代数第一章线性方程组与矩阵重点ppt课件.ppt(22页珍藏版)》请在三一办公上搜索。
线性代数,第一章线性方程组与矩阵,一、高斯消元法解线性方程组例1 解线性方程组,阶梯形方程组,之后从最后一个方程开始回代,便得方程组的解,定义1对线性方程组所作的下述三种变换,统称为方程组的初等变换:(1)交换方程组中某两个方程的置;(2)给某个方程乘上一个非零常数;(3)用一个非零常数乘某个方程后加到另一个方程上. 线性方程组的初等变换的重要特性是它不改变线性方程组的解. 定理1经初等变换后所得的方程组与原方程组同解.,高斯消元法的本质就是通过对方程组进行适当的初等变换,将原方程组转化为相对简单的阶梯形的同解方程组,从而比较容易地判断原方程组是否有解.,例2 解线性方程组,上述方程组通过三种初等变换可化为下面阶梯形方程组,无解,例3 解线性方程组,上述方程组通过三种初等变换可化为下面阶梯形方程组,无穷解,由上述三个例子得到线性方程组解的情况:,1.最后一个方程是 (左侧为零,右侧不为零), ( 是非零常数)此时原方程组无解. 2.最后一个方程左侧不等于零,则原方程组有解. 此时又可分成两种情形. 设阶梯形方程组中有 个系数不全为零的方程(也称为 个真方程).,c,(1)若 ,即真方程的个数与未知量的个数相同,则方程组有唯一解. (2)若 ,即真方程的个数小于未知量的个数,则方程组有无穷多解.,三、矩阵的秩及线性方程组解的判定,非齐次线性方程组与齐次线性方程组解的判定,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 第一章 线性方程组 矩阵 重点 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1358376.html