清华大学《运筹学教程》胡运权主编课后习题答案ppt课件.ppt
《清华大学《运筹学教程》胡运权主编课后习题答案ppt课件.ppt》由会员分享,可在线阅读,更多相关《清华大学《运筹学教程》胡运权主编课后习题答案ppt课件.ppt(51页珍藏版)》请在三一办公上搜索。
1、1,同样适合 第三版黄皮版,运筹学教程(第二版)习题解答,安徽大学管理学院洪 文,3,第一章习题解答,1.1 用图解法求解下列线性规划问题。并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。,4,第一章习题解答,5,第一章习题解答,6,第一章习题解答,1.2 将下述线性规划问题化成标准形式。,7,第一章习题解答,8,第一章习题解答,9,第一章习题解答,1.3 对下述线性规划问题找出所有基解,指出哪些是基可行解,并确定最优解。,10,第一章习题解答,11,第一章习题解答,12,第一章习题解答,1.4 分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应图解法
2、中可行域的哪一顶点。,13,第一章习题解答,14,第一章习题解答,l.5 上题(1)中,若目标函数变为max Z = cx1 + dx2,讨论c,d的值如何变化,使该问题可行域的每个顶点依次使目标函数达到最优。 解:得到最终单纯形表如下:,15,第一章习题解答,当c/d在3/10到5/2之间时最优解为图中的A点;当c/d大于5/2且c大于等于0时最优解为图中的B点;当c/d小于3/10且d大于0时最优解为图中的C点;当c/d大于5/2且c小于等于0时或当c/d小于3/10且d小于0时最优解为图中的原点。,16,第一章习题解答,式中,1c13, 4c26, -1a113, 2a125, 8b11
3、2, 2a215, 4a226, 10b214,试确定目标函数最优值的下界和上界。,l.6 考虑下述线性规划问题:,17,第一章习题解答,最优值(上界)为:21,解:上界对应的模型如下(c,b取大,a取小),18,第一章习题解答,最优值(下界)为:6.4,解:下界对应的模型如下( c,b取小,a取大),19,第一章习题解答,l.7 分别用单纯形法中的大M法和两阶段法求解下列线性规划问题,并指出属哪类解。,20,第一章习题解答,21,第一章习题解答,22,第一章习题解答,23,第一章习题解答,1.8 已知某线性规划问题的初始单纯形表和用单纯形法迭代后得到下面表格,试求括弧中未知数al值。,b=2
4、, c=4, d=-2, g=1, h=0, f=3, i=5, e=2, l=0, a=3, j=5, k= -1.5,24,第一章习题解答,1.9 若X(1)、X(2)均为某线性规划问题的最优解,证明在这两点连线上的所有点也是该问题的最优解。,25,第一章习题解答,1.10 线性规划问题max ZCX,AXb,X0,设X0为问题的最优解。若目标函数中用C*代替C后,问题的最优解变为X*,求证(C*-C)(X*-X0)0,26,第一章习题解答,1.11 考虑线性规划问题,模型中,为参数,要求: (1)组成两个新的约束(i)(i)+(ii),(ii)(ii)一2(i),根据(i),(ii)以x
5、1,x2为基变量,列出初始单纯形表;,27,第一章习题解答,28,第一章习题解答,(2)在表中,假定0,则为何值时,x1, x2为问题的最优基变量; 解: 如果=0,则当3a 4时,x1, x2为问题的最优基变量; (3)在表中,假定3,则为何值时,x1, x2为问题的最优基。 解: 如果a=3,则当-1 1时,x1, x2为问题的最优基变量。,29,第一章习题解答,1.12 线性规划问题max ZCX,AXb,X0,如X*是该问题的最优解,又0为某一常数,分别讨论下列情况时最优解的变化。 (1)目标函数变为max ZCX; (2)目标函数变为max Z(C+)X; (3)目标函数变为max
6、ZC/*X,约束条件变为AXb。 解:(1)最优解不变; (2)C为常数时最优解不变,否则可能发生变化。 (3)最优解变为:X/ 。,30,第一章习题解答,1.13 某饲养场饲养动物出售,设每头动物每天至少需700g蛋白质、30g矿物质、100mg维生素。现有五种饲料可供选用,各种饲料每kg营养成分含量及单价如下表所示。,31,第一章习题解答,要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。(建立这个问题的线性规划模型,不求解),32,第一章习题解答,1.14 某医院护士值班班次、每班工作时间及各班所需护士数如下页表格所示。,33,第一章习题解答,(1)若护士上班后连续工作8h
7、,该医院最少需多少名护士,以满足轮班需要;,34,第一章习题解答,(2)若除22:00上班的护士连续工作8h外(取消第6班),其他班次护士由医院排定上1-4班的其中两个班,则该医院又需多少名护士满足轮班需要。 解:第5班一定要30个人,,35,第一章习题解答,36,第一章习题解答,1.15 艘货轮分前、中、后三个舱位,它们的容积与最大允许载重量见后面的表格。现有3种货物待运,已知有关数据列于后面的表格。 又为了航运安全,前、中、后舱的实际载重量大体保持各舱最大允许载重量的比例关系。具体要求:前、后舱分别与中舱之间载重量比例的偏差不超过15,前、后舱之间不超过10。问该货轮应装载A,B,C各多少
8、件运费收入才最大?试建立这个问题的线性规划模型。,37,第一章习题解答,38,第一章习题解答,MAX= 1000(X(1,1)+X(1,2)+X(1,3)) +700 (X(2,1)+X(2,2)+X(2,3)) +600 (X(3,1)+X(3,2)+X(3,3)) SUBJECT TO X(i,j)表示第商品i在舱j的装载量,i,j=1,2,3 商品数量约束: 1 X(1,1)+X(1,2)+X(1,3) = 600 2 X(2,1)+X(2,2)+X(2,3) = 1000 3 X(3,1)+X(3,2)+X(3,3) = 800,39,第一章习题解答,商品容积约束: 4 10X(1,1
9、)+5X(2,1)+7X(3,1) = 4000 5 10X(1,2)+5X(2,2)+7X(3,2) = 5400 6 10X(1,3)+5X(2,3)+7X(3,3) = 1500 最大载重量约束: 7 8 X(1,1)+6X(2,1)+5X(3,1) = 2000 8 8 X(1,2)+6X(2,2)+5X(3,2) = 3000 9 8 X(1,3)+6X(2,3)+5X(3,3) = 1500,40,第一章习题解答,重量比例偏差约束: 10 8X(1,1)+6X(2,1)+5X(3,1)=2/3(1-0.15) 8X(1,2)+6X(2,2)+5X(3,2) 12 8X(1,3)+6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学教程 清华大学 运筹学 教程 胡运权 主编 课后 习题 答案 ppt 课件

链接地址:https://www.31ppt.com/p-1349429.html