流体力学第一章基础概念ppt课件.ppt
《流体力学第一章基础概念ppt课件.ppt》由会员分享,可在线阅读,更多相关《流体力学第一章基础概念ppt课件.ppt(133页珍藏版)》请在三一办公上搜索。
1、流体力学 李忠贤南京信息工程大学 大气科学学院,引 言,一、流体力学的研究对象,流体力学是力学的一个分支,是研究水和空气之类的流体宏观运动规律,以及流体与固体之间相互作用规律的一门学科。,流体力学的基本内容。,流体的运动规律如何?,流体运动时对处于其中的其他物体产生的影响和作用如何?,问 题:, 理论方法,二、研究方法,流体性质和流动特性的主要因素,理论流体力学,宏观物理模型或理论模型,控制流体运动的闭合方程组,流动问题转化为数学问题,问题的求解,物理规律,数学,存在问题: 流体运动方程组通常为包含非线性项的微分方程所构成。 由于数学上求解的困难,许多实际流动问题难以精确求解。, 计算方法(数
2、值方法),通过把流场划分为许多微小的网格或区域,在各个网格点或各小区域中求支配流动方程的近似解,通过数值计算的方法,近似求解运动方程组,最终得到方程数值解。,存在问题: 数值方法求解其适用范围受数学模型的正确性、计算精度和计算机性能所限制。,实验方法:,主要通过设计实验,对实际流动问题进行模拟,并通过对具体流体运动的观察和测量来归纳流体运动规律。,实验流体力学,存在问题: 从实验中得到的经验公式的普适性较差。,三、应用,流体力学与人类生活、工农业生产密切相关,广泛涉及工程技术和科学研究的各个领域,特别是与大气科学密切相关,已渗透到大气科学的各个领域,成为大气科学的重要的理论依据。地球上的大气和
3、海洋是最常见的自然流体,因而相应地形成了地球物理流体力学。研究大气和海洋运动规律的动力气象学、动力气候学和动力海洋学,都是流体力学领域中的不同分支,而流体力学是大气科学的重要的基础理论之一。,四、课程性质和学习目标,课程性质:专业基础课,是学习气象、环境等地球物 理学科的基础。,学习目标:理解和掌握流体力学的基本概念、方法。,五、主要教学内容和具体安排,第一章 基础概念第二章 基本方程第三章 相似原理与量纲分析第四章 涡旋动力学基础第五章 流体波动第六章 旋转流体力学第七章 湍流第八章 流体边界层简介,参考书目:,1.王宝瑞编著,1988年,气象出版社,流体力学2.吴望一编著,1983年,北京
4、大学出版社,流体力学3.李冀祺、马素贞编著,1983年,科学出版社,流体力学基础4.丁祖荣编著,2019年,高等教育出版社,流体力学,第一章 基础概念,第一节 流体的物理性质和宏观模型第二节 流体的速度和加速度第三节 迹线和流线第四节 速度分解第五节 涡度、散度和形变率第六节 速度势函数和流函数,主要内容,主要介绍流体力学的基本概念。(基础和核心内容),一、物理性质,第一节 流体的物理性质和宏观模型,自然界的物质,凝聚态(分子间的平均间距不同),固体,液体,气体,流体,与固体不同:流动性 粘性 压缩性,1、流动性(形变性),流体的形状极易发生变化;流体的抗拉强度极小;只有在适当的约束条件下,才
5、能承受压力;处于静止状态的流体不能承受任何剪切力的作用, 不论在如何小的剪切力作用下,流体将发生连续不断的变形。,流体容易发生形变的特性,称为流动性或者形变性。,2、粘 性,当流体层之间存在相对运动或切形变时,流体就会反抗这种相对运动或切形变,使流体渐渐失去相对运动或切形变;流体这种抗切变性或阻碍流体相对运动的特性,称之为粘性。,牛顿在自然哲学的数学原理(1687)中指出: 相邻两层流体作相对运动时存在内摩擦作用,称为粘性力。,温度与粘性 粘性是分子之间的吸引力与分子不规则热运动引起的动量交换的结果。温度升高,分子之间的吸引力降低,动量增大;反之,温度降低,分子之间的吸引力增大,动量减小。,2
6、、粘 性,对液体,分子之间的吸引力是决定性因素,所以液体的粘性随温度升高而减小; 对于气体,分子之间的热运动产生动量交换是决定性因素,所以,气体的粘性随温度升高而增大。,牛顿粘性定律,牛顿在自然哲学的数学原理中假设:“流体两部分由于缺乏润滑而引起的阻力,同这两部分彼此分开的速度成正比”。即在图中,粘性切应力为,上式称为牛顿粘性定律,它表明:, 牛顿粘性定律已获得大量实验证实。,粘性切应力与速度梯度成正比;,(2)比例系数称动力学粘性系数。,当流体粘性很小,且相对速度不大时,流体的粘性力对流动的作用就不重要甚至可以略去,这种不考虑粘性的流体称为理想流体。,理想流体的概念,3、压缩性,流体的体积元
7、在运动的过程中可以因温度、压力等因素的改变而有所变化的特性,称为流体的压缩性。,按压缩性,通常可把流体分为,不可压缩流体可压缩流体,不同流体的压缩性:液体的分子间距离较小,作用力较大,所以在宏观上很难改变其体积,压缩性较小,因此,液体在常温常压的条件下压缩性很小,大多数情况下可以看作不可压缩流体来处理;气体分子较分散,分子间的距离较大,分子的作用力较小,宏观上讲,容易改变体积,气体的压缩性明显比液体大,通常需要看作可压缩性流体来处理; 研究表明:由于速度小,压缩性小;速度大,压缩性大,因此对于流动不快的气体,而且在流动过程中的温差和压差均不大时,也可以近似地将其视为不可压缩流体。,流体模型分类
8、,流体模型,按粘性分类,无粘性流体,粘性流体,牛顿流体,非牛顿流体,按可压缩性分类,可压缩流体,不可压缩流体,其他分类,完全气体,正压流体,斜压流体,均质流体,等熵流体,恒温流体,实际流体是由大量的流体分子组成的,而流体分子之间存在空间间隙。对于这种由离散分子构成的真实流体,如何研究它的运动? 通常我们所指的流体运动是指流体的宏观运动,不需要涉及到流体分子运动以及分子的微观结构。,二、流体的连续介质假设宏观理论模型,若以单个分子为研究对象,由于其运动的随机性,相应的物理量(如分子速度)随时间作随机变化,由于分子间存在间距,则物理量在空间上存在不连续性。,流体的微观和宏观特性,若研究对象扩大到包
9、含大量分子的流体团,则流体团性质表现为其中所有分子的统计平均特性。只要分子数足够大,统计平均值在时间和空间是连续的,这种特性成为流体团的宏观特性。,微观足够大,其统计平均可以反映稳定的宏观值的大量的流体分子所组成的流体微团称之为流体质点。,流体质点(或流点)的概念:,流体质点的线尺度大于分子运动的线尺度;宏观上充分小,流体质点的线尺度小于流体运动的线尺度。,流体质点 流体微团 流体微元,流体连续介质假设,把由离散分子构成的实际流体看成是有无数流体质点没有间隙连续分布构成的,这就是所谓的流体连续介质假设。,对于气象学或者大气科学,除高层稀薄大气外,通常也是将大气当作连续介质来考虑的。在50公里左
10、右的高空大气,仍然可以作为连续介质。在更高的地方,大气就不能看作连续介质。,流体力学研究是以流体的连续介质模型作为基本假设,在此基础上再考虑流体的形变性、压缩性、粘性等特性,并由此来研究流体运动及流体与固体之间的相互作用的。 注意:流体力学研究是以流体微团(流体元)或者流点作为研究对象的。,第二节流体的速度和加速度,一、描写流体运动的两种方法,一个实际流体问题:河水流动的描述问题?,以河道中的某一个流点作为研究对象,跟踪流点的运动,测量并得到其运动状况及其速度,如果采用同样的方法,只要对河道中所有的流点进行跟踪测量,那么就可以得到整个河道中流动的流速分布,从而对河水的流动作出正确的描述;,针对
11、河道中的某一固定的空间点,测量出该空间点的流动速度,进而通过测量不同空间点河水的流动速度,最终得到整个河道中河水的流动情况。,1、拉格郎日(Lagrange)方法(质点的观点或随体观点),着眼于流体质点,描述每一个流点自始至终的运动过程和它们的运动参数随时间的变化规律;综合所有流体质点运动参数的变化规律,得到了整个流体的运动规律。,个别流点的运动特征,整个流体运动特征,2、欧拉(Euler)方法(场的观点),又称局地法,着眼于空间点,是从分析流场中每一个空间点上的流体质点的运动着手,研究流点通过固定空间点时的运动参数随时间的变化规律,如果空间中每一个点的流体运动都已知,就可以知道整个流体的运动
12、状态。,个别空间点运动特征,整个流体运动特征,流体质点和空间点是两个截然不同的概念,空间点指固定在流场中的一些点,空间点上的速度指流体质点正好流过此空间点时的速度。,流体质点和空间点,1、Lagrange变量,二、两种变量,考虑确定的参考系,取流点的位置矢径为 ,且可以表示为:,O,x,y,z,假定某一流点的初始时刻 位置位于点:,则该流点不同时刻的位置矢径为 ,可以表示为:,分量形式:,变量x,y,z或参数 为Lagrange变量。,2、Euler变量,通常,流速矢应是空间点和时间的函数:,分量形式:,变量u,v,w为Euler变量。,若流场不随空间变化-均匀流场;反之,为非均匀场;若流场不
13、随时间变化-定常(稳定)流场;反之,为非定常(不稳定)场。,几个与流场 有关的基本概念,Lagrange变量,Euler变量,?,三、两种变量之间的转换,1、Lagrange变量转化为Euler变量,Lagrange观点下有:,据速度的定义,求它们随时间的变化率(流点速度)即:,第二,它表示在时间t经过空间点(x,y,z)处的流点流速,上式有如下含义:,第一,它表示原来位于(x0,y0,z0)处流点在时间t的速度,欧拉变量表明了流速在空间点 的分布。,而Euler观点下,对于固定的时间t :,?,例1-2-1 已知Lagrange变量 , 将其转换为Euler变量 。,Lagrange变量 E
14、uler变量的具体方法:,利用Lagrange变量,对时间 t 求偏导数,求解各流点的流速;,在速度表达式中,消去Lagrange参数(x0,y0,z0 ),即可得到Euler变量。,例1-2-2 已知Lagrange变量 , 将其转换为Euler变量 。,把x,y,z当作t 时刻某流点所达到的位置,此时为t的函数;,2、Euler变量转化为Lagrange变量,Euler观点下,对于固定的时间 t :,转换,(1)求解微分方程组:,Euler变量 Lagrange变量的具体方法:,例1-2-3已知用Euler变量表示的流场速度分布为,试求其对应的Lagrange变量。,例1-2-4已知用Eu
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流体力学 第一章 基础 概念 ppt 课件
链接地址:https://www.31ppt.com/p-1347767.html