机器学习讲座ppt课件.pptx
《机器学习讲座ppt课件.pptx》由会员分享,可在线阅读,更多相关《机器学习讲座ppt课件.pptx(58页珍藏版)》请在三一办公上搜索。
1、,Machine Learning and its application,Relationships among AI,ML,DL人工智能、机器学习、深度学习的关系,人工智能:机器展现的人类智能,机器学习:实现人工智能的一种方法,深度学习:实现机器学习的一种技术,Outline,Introduction of Machine Learning,Why Deep?,How to learn it?,Application of deep learning,Products,BaiduEye百度识图Google Glass,Apple Siri微软小冰,Products (NLP),智能对话、百
2、科、天气、星座、笑话、交通指南、餐饮点评等,JIMI智能机器人,售前咨询,售后服务,生活伴侣,场景,用户画像,提供个性化的产品服务,人口属性:地域、年龄、性别、文化、职业、收入、生活习惯、消费习惯等产品行为:产品类别、活跃频率、产品喜好、产品驱动、使用习惯、产品消费等,京东的JIMI智能机器人 DNN Lab首席科学家李成华:“用深度学习搞定80%的客服工作。”,Products (NLP),Handwriting recognition(LeNet-5),http:/,Yann Lecun于1989年提出的CNN原型,成功应用于欧洲很多国家的手写支票识别。,Land Cover Classi
3、fication,Deep Dream, Given a photo, machine adds what it sees ,http:/,Deep Dream, Given a photo, machine adds what it sees ,http:/,Deep Style, Given a photo, make its style like famous paintings,https:/,Deep Style, Given a photo, make its style like famous paintings,https:/,Deep Style,CNNcontent,CNN
4、style,CNN?,Outline,Introduction of Machine Learning,Why Deep?,How to learn it?,Application of deep learning,Machine Learning Looking for a Function Speech Recognition, Playing Go, Dialogue System,f Image Recognitionf,f,f, “How are you” “Cat”,“Hello”,“Hi”,(what the user said),(system response), “5-5”
5、 (next move),f1f1,“cat”“dog”,f2f2,“money”“snake”,FrameworkModelA set offunctionf1, f2,f,“cat”,Image Recognition:,“cat”,Image Recognition:,FrameworkModelA set offunctionf1, f2,TrainingData,fBetter!,“cat”,“dog”,function input:,function output: “monkey”,Goodness offunction fSupervised Learning,Framewor
6、k,A set of,function,f1, f2,f,“cat”,Image Recognition:,Model,TrainingData,“monkey”,“cat”,“dog”,Using,f ,“cat”,Training,Testing,Step 1,Goodness offunction fStep 2,Pick the “Best” Functionf *Step 3,Step 1:define a setof function,Step 2:goodness offunction,Step 3: pickthe bestfunction,Three Steps for De
7、ep Learning,Deep Learning is so simple ,Neural,Step 1:define a setfunction,of Network,Step 2:goodness offunction,Step 3: pickthe bestfunction,Three Steps for Deep Learning,Deep Learning is so simple ,Human Brains,PlayGround的网址是:http:/playground.tensorflow.org/,w1,a1,akaK,b,a,wkwKweights,Neural Netwo
8、rkNeuronz a1w1akwk aKwK b,A simple function,z zActivationfunctionbias,Neural Network,z,Activationfunctionbias,Neuron,1,-2,-1weights,1,2,-1,1,4,z,z,z,11e,z,Sigmoid Function,0.98,z,z,z,z,Neural NetworkDifferent connections leads todifferent network structure,Each neurons can have different valuesof we
9、ights and biases.Weights and biases are network parameters ,Fully Connect FeedforwardNetwork,z,z,z,11e,z,Sigmoid Function,1,-1,1,-2,-11,1,4,-20,0.98,0.12,Fully Connect FeedforwardNetwork,1,-2,1,-1,1,0,4,-2,0.12,0.98 2,-1,-1,-2,-1,4,-1,0.86 3,0.11,0.62,0.83,0,0,-2,2,1,-1,Fully Connect FeedforwardNetw
10、ork,1,-2,-11,1,0,0.5,0.73 2,-1,-2-1,3,-1,-14,0.72,0.12,0.51,0.85,0,0,-2,2,00,=,0.510.85,11,=,0.620.83,0,0,This is a function.Input vector, output vector,Given parameters , define a functionGiven network structure, define a function set,Output,Layer,Hidden Layers,Input,Layer,Fully Connect Feedforward
11、,Network,Layer 1,Inputx1x2xN,Layer 2,Layer L,Outputy1y2yM,Deep means many hidden layers,neuron,Output Layer (Option) Softmax layer as the output layerOrdinary Layer,y1 z1y2 z2y3 z3,z1z2z3,In general, the output ofnetwork can be any value.May not be easy to interpret,y1 e,e,z2,z2 2.7,0.05,e, e,e,e,z1
12、, Softmax layer as the output layerSoftmax Layer,e,ee,z1,e,e,3j1,z1,z j,z33j1,z j,3,1z3 -3,20,0.88,Output Layer (Option)Probability:, 1 0 = 1,3j13j1,z2z3,z jz j,0.12y2 e0y3 e,Example Application,Input,Output,16 x 16 = 256,x1,x2,x256,Ink 1No ink 0,y,y2,y10,Each dimension representsthe confidence of a
13、 digit.,is 1,is 2,is 0,0.1,0.7,0.2,The image,is “2”,Machine,Example Application Handwriting Digit Recognition,x1,x2x256,y1,y2“2”y10,is 1,is 2is 0,function ,Input:256-dim vector,output:10-dim vector,NeuralNetworkWhat is needed is a,Example Application,Input,Output,Layer 1,x1x2xNInputLayer,Layer 2,Lay
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 讲座 ppt 课件

链接地址:https://www.31ppt.com/p-1342317.html