数学归纳法ppt课件.ppt
《数学归纳法ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学归纳法ppt课件.ppt(36页珍藏版)》请在三一办公上搜索。
1、2.3 数学归纳法,我是一毛,我是二毛,我是三毛,我是谁?,我不是四毛!我是小明!,不完全归纳,猜:四毛!,完全归纳,?,了解数学推理的常用方法(归纳法).了解数学归纳法的原理及使用范围.初步掌握数学归纳法证题的两个步骤和一个结论.会用数学归纳法证明一些简单的等式问题. (重点、难点),探究点 数学归纳法的原理与定义,问题1:口袋中有4个吃的东西,如何证明它们都是糖?,把研究对象一一都考察到,而推出结论的归纳法.,完全归纳法,(1)求出数列前4项,你能得到什么猜想?,(2)你的猜想一定是正确的吗?,猜想数列的通项公式为:,解:,不完全归纳法,从一类对象中的部分对象都具有某种性质推出这类对象全体
2、都具有这种性质的归纳推理方法,验证:,逐一验证,不可能!,能否通过有限个步骤的推理,证明n取所有正整数都成立?,数学归纳法与多米诺骨牌有怎样的相似之处呢?,多米诺骨牌,数学归纳法的第一步:先证明n取第一个值时命题成立.相当于多米诺骨牌开始倒的第一张.数学归纳法的第二步:假设当n=k时命题成立,并证明当n=k+1时命题也成立.相当于多米诺骨牌第k张倒后第k+1张是否也会跟着倒.,1.第几块骨牌,数列第几项都是与正整数有关的问题.,2.共同点是任意前一个的情况都可以推出后一个的情况.,多米诺骨牌与我们要解决的问题2有相似性吗?相似性体现在哪些方面呢?,上述2,事实上给出了一个递推关系,换言之就是假
3、设第k块倒下,则相邻的第k+1块也倒下.,你能类比多米诺骨牌游戏牌全倒条件,证明上述问题2猜想的结论吗?,猜想数列的通项公式为,证明:,(1)当,猜想成立.,(2),那么,当,根据(1)和(2),猜想对于任何 都成立.,一般地,证明一个与正整数n有关的命题,可按下列步骤进行:,1.(归纳奠基)证明当n取第一个值n0(n0N*)时命题成立.,2.(归纳递推)假设当n=k(kn0,kN*)时命题成立,证明当n=k+1时命题也成立.,只要完成这两个步骤,就可以断定命题对于从n0开始的所有正整数n都成立.,这种证明方法叫做数学归纳法.,若n = k ( k n0) 时命题成立,证明n=k+1时命题也成
4、立.,验证n=n0时命题成立.,命题对从n0开始所有的正整数n 都成立.,归纳奠基,归纳递推,数学归纳法:,两个步骤 一个结论缺一不可,已知三角形内角和为180,四边形的内角和为360,五边形的内角和为540,于是有:凸n边形的内角和为(n-2)180,若用数学归纳法证明,第一步验证n取第一个正整数时命题成立,则第一个正整数取值为_,3,【即时训练】,例1 用数学归纳法证明,证明:,(1)当n=1时,,左边=12=1,等式成立,(2)假设当n=k( )时等式成立,即,那么,当n=k+1时,即当n=k+1时等式也成立.,根据(1)和(2),可知等式对任何 都成立.,用数学归纳法证明:(n+1)(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 归纳法 ppt 课件
链接地址:https://www.31ppt.com/p-1340073.html