数学归纳法(讲课用)ppt课件.ppt
《数学归纳法(讲课用)ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学归纳法(讲课用)ppt课件.ppt(21页珍藏版)》请在三一办公上搜索。
1、2.3 数学归纳法,高二数学组 林占生,课前篇检查与展示,问题 1:,问题2:某人看到树上乌鸦是黑的,深有感触地说全世界的乌鸦都是黑的。,问题情境一,.,我是白的哦!,:由一系列有限的特殊事例得出一般结论的推理方法,结论一定可靠,结论不一定可靠,考察全体对象,得到一般结论的推理方法,考察部分对象,得到一般结论的推理方法,归纳法分为完全归纳法 和 不完全归纳法,归纳法,思考:归纳法有什么优点和缺点?,优点:可以帮助我们从一些具体事 例中发现一般规律,缺点:仅根据有限的特殊事例归纳 得到的结论有时是不正确的,思考1:与正整数n有关的数学命题能否通过一一验证的办法来加以证明呢?,思考2:如果一个数学
2、命题与正整数n有关,我们能否找到一种既简单又有效的证明方法呢?,对于由不完全归纳法得到的某些与自然数有关的数学命题我们常采用下面的方法来证明它们的正确性:,(1)证明当n取第一个值n0(例如n0=1) 时命题成立;(2)假设当n=k(kN* ,k n0)时命题成立 证明当n=k+1时命题也成立.最后由(1)(2)得出结论全体自然数成立,数学归纳法,【命题成立的连续性】,【命题成立的必要性】,这种证明方法叫做 数学归纳法,1+3+5+(2n1)=n2 (nN*),证明:,例1:观察,归纳猜想:,你能得出什么结论?并用数学归纳法证明你的结论。,n,n,(1)当n=1时,左边=1,右边=12=1,,
3、等式成立.,(2)假设n=k时等式成立,,即1+3+5+(2k1)=k2 ,则n=k+1时, 1+3+5+2(k+1)1,= 1+3+5+(2k1)+2(k+1)-1,= k2+2k+1,=(k+1)2.,即n=k+1时等式也成立.,根据(1),(2)知等式对一切nN*都成立.,135(2n1),用数学归纳法证明,n2,即当n=k+1时等式也成立。,根据(1)和(2)可知,等式对任何都成立。,证明:,135(2k1)+2(k+1)1,那么当n=k+1时,(2)假设当nk时,等式成立,即,(1)当n=1时,左边1,右边1,等式成立。,(假设),(利用假设),注意:递推基础不可少, 归纳假设要用到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 归纳法 讲课 ppt 课件
链接地址:https://www.31ppt.com/p-1340070.html