数学建模姜启源第六章稳定性模型ppt课件.ppt
《数学建模姜启源第六章稳定性模型ppt课件.ppt》由会员分享,可在线阅读,更多相关《数学建模姜启源第六章稳定性模型ppt课件.ppt(46页珍藏版)》请在三一办公上搜索。
1、第六章 稳定性模型,6.1 捕鱼业的持续收获6.2 军备竞赛6.3 种群的相互竞争6.4 种群的相互依存6.5 种群的弱肉强食,稳定性模型,对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势 平衡状态是否稳定。,不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。,6.1 捕鱼业的持续收获,再生资源(渔业、林业等)与非再生资源(矿业等),再生资源应适度开发在持续稳产前提下实现最大产量或最佳效益。,问题及 分析,在捕捞量稳定的条件下,如何控制捕捞使产量最大或效益最佳。,如果使捕捞量等于自然增长量,渔场鱼量将保持不变,则捕捞量稳定。,背景,产量模型,假设,无捕捞时鱼的自然增长
2、服从 Logistic规律,单位时间捕捞量与渔场鱼量成正比,建模,捕捞情况下渔场鱼量满足,不需要求解x(t), 只需知道x(t)稳定的条件,r固有增长率, N最大鱼量,h(x)=Ex, E捕捞强度,x(t) 渔场鱼量,一阶微分方程的平衡点及其稳定性,一阶非线性(自治)方程,F(x)=0的根x0 微分方程的平衡点,不求x(t), 判断x0稳定性的方法直接法,(1)的近似线性方程,产量模型,稳定性判断,x0 稳定, 可得到稳定产量,x1 稳定, 渔场干枯,E捕捞强度,r固有增长率,产量模型,在捕捞量稳定的条件下,控制捕捞强度使产量最大,图解法,P的横坐标 x0平衡点,P的纵坐标 h产量,产量最大,
3、控制渔场鱼量为最大鱼量的一半,效益模型,假设,鱼销售价格p,单位捕捞强度费用c,单位时间利润,在捕捞量稳定的条件下,控制捕捞强度使效益最大.,求E使R(E)最大,渔场鱼量,收入 T = ph(x) = pEx,支出 S = cE,捕捞过度,封闭式捕捞追求利润R(E)最大,开放式捕捞只求利润R(E) 0,R(E)=0时的捕捞强度(临界强度) Es=2ER,临界强度下的渔场鱼量,捕捞过度,令=0,6.2 军备竞赛,描述双方(国家或国家集团)军备竞赛过程,解释(预测)双方军备竞赛的结局,假设,1)由于相互不信任,一方军备越大,另一方军备增加越快;,2)由于经济实力限制,一方军备越大,对自己军备增长的
4、制约越大;,3)由于相互敌视或领土争端,每一方都存在增加军备的潜力。,进一步假设,1)2)的作用为线性;3)的作用为常数,目的,建模,军备竞赛的结局,x(t)甲方军备数量, y(t)乙方军备数量, 本方经济实力的制约; k, l 对方军备数量的刺激;g, h 本方军备竞赛的潜力。,记系数矩阵,特征方程,特征根,特征根,平衡点 P0(0,0),微分方程一般解形式,1,2为负数或有负实部, 0 或 q 0,平衡点,稳定性判断,系数矩阵,平衡点(x0, y0)稳定的条件,模型,军备竞赛,模型的定性解释,双方军备稳定(时间充分长后趋向有限值)的条件,双方经济制约大于双方军备刺激时,军备竞赛 才会稳定,
5、否则军备将无限扩张。,平衡点,2) 若g=h=0, 则 x0=y0=0, 在 kl 下 x(t), y(t)0, 即友好邻国通过裁军可达到永久和平。,模型, 本方经济实力的制约; k, l 对方军备数量的刺激;g, h 本方军备竞赛的潜力。,3)若 g,h 不为零,即便双方一时和解,使某时x(t), y(t)很小,但因 ,也会重整军备。,4)即使某时一方(由于战败或协议)军备大减, 如 x(t)=0, 也会因 使该方重整军备,,即存在互不信任( ) 或固有争端( ) 的单方面裁军不会持久。,模型的定性解释, 本方经济实力的制约; k, l 对方军备数量的刺激;g, h 本方军备竞赛的潜力。,模
6、型,6.3 种群的相互竞争,一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。,当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。,建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件。,模型假设,有甲乙两个种群,它们独自生存时数量变化均服从Logistic规律;,两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比; 甲对乙有同样的作用。,对于消耗甲的资源而言,乙(相对于N2)是甲(相对于N1) 的 1 倍。,模型,模型分析,(平衡点及其稳定性),模型,判断P0 (x10,x20) 稳定性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 姜启源 第六 稳定性 模型 ppt 课件
链接地址:https://www.31ppt.com/p-1339980.html