射频电路理论与技术Lectrue 6(定向耦合器等)ppt课件.ppt
《射频电路理论与技术Lectrue 6(定向耦合器等)ppt课件.ppt》由会员分享,可在线阅读,更多相关《射频电路理论与技术Lectrue 6(定向耦合器等)ppt课件.ppt(60页珍藏版)》请在三一办公上搜索。
1、1,射频电路理论与技术,2,微带线阻抗变换器,两段特性阻抗不同的传输线如果直接相连接,则在连接处会产生反射。为消除反射可在连接处插入一个阻抗变换器以达到匹配。,阻抗变换器也是一种调配器,它是一种不可调的固定调配器。,阻抗变换器一般由一段或几段特性阻抗不同的传输线所构成,设计中要解决的问题是如何正确选择参量,使之能在给定的频带内达到所要求的匹配程度。,在微带电路中,最常应用的变阻器有以下几种形式:,(1)渐变线。在两个不同阻抗之间,传输线的特性阻抗逐渐由一个阻抗值变为另一阻抗值,使连接区的反射系数控制在允许范围之内。应用较广的渐变线为指数线。,3,(2)l/4变阻器。在微波技术中已得到广泛应用,
2、在微带电路中也如此。宽频带变阻必须和滤波器一样,采用多节变阻器。为了用最紧凑的结构获得优良的性能,也采取了综合设计法。,(3)短节变阻器。由L,C集总参数变阻电路变换而来,其主要特点是每节的长度很短,只有l/32或l/16。取同样的变阻器总长,其特性较l/4多节变阻器有所改善。由于其结构紧凑,用于微波集成电路比较理想。,一、四分之一波长变换器,四分之一波长变换器对于匹配实数负载阻抗到传输线,是简单而有用的电路,它还有这样的特点:能够以有规律的方式应用于有较宽带宽的多节变换器的设计。若只需要窄带匹配,则单节变换器可以满足需要,而多节四分之一波长变换器的设计可在所希望的频带上同时达到最佳匹配特性。
3、,4,四分之一波长变换器的缺点是,它只能匹配实数负载阻抗。但是通过在负载和变换器之间加一段合适长度的传输线,或者一个合适的串联或并联电抗性短截线,复数负载阻抗总能转换成实数阻抗。,图2.50 单节四分之一匹配变换器。,单节四分之一波长匹配变换器的电路如图2.50所示。匹配段的特性阻抗是,(2.75),在设计频率f0处,匹配段的电长度是l0/4,但是在其他频率下电长度是不同的,所以不再被完全匹配。,现在推导失配与频率的近似表达式。,5,向匹配端看去的输入阻抗是,(2.76),式中,,在设计频率f0处,,于是反射系数为,(2.77),(2.78),6,反射系数值是,(2.79),现在,若我们假定频
4、率接近设计频率f0,则,(2.80),式(2.79)简化为,q 接近于p /2,这个结果给出了四分之一波长变换器在接近设计频率处的近似失配性。,7,若我们将最大可容忍的反射系数的幅值设置为Gm,则可定义匹配变换器的带宽为,(2.81),因为式(2.79)的响应是关于q =p /2 对称的,且在G=Gm 和q =qm 处有 q =p qm 。,为了得出反射系数的精确表示式,我们可以从式(2.79)解出:,(2.82),或,8,假定采用的是TEM传输线,则,所以,在q =qm 处,带宽低端的频率是,由式(2.82)可得到相对带宽为,(2.83),9,相对带宽通常表示为百分数 100Df /f0 %
5、。,注意,当ZL接近Z0时(小失配负载),变换器的带宽增加了。,上面的结果只对TEM传输线严格有效。,当用非TEM传输线(诸如波导)时,传播常数不再是频率的线性函数,而且波阻抗也与频率有关。这些因素使得非TEM传输线的一般特性复杂了。,在上面的分析中,忽略的另一因素是,当传输线的尺寸有阶跃变化时,与该不连续性相联系的电抗的影响。这通常可对匹配长度做小的调整来补偿该电抗的影响。,10,The multiple reflection viewpoint,G=total reflection coefficient;G1=partial reflection coefficient of a wav
6、e incident on a load Z1, from the Z0 line;G2=partial reflection coefficient of a wave incident on a load Z0, from the Z1 line;G3=partial reflection coefficient of a wave incident on a load RL, from the Z1 line;T1=partial transmission coefficient of a wave from the Z0 line into the Z1 line;T2=partial
7、 transmission coefficient of a wave from the Z1 line into the Z0 line;,11,These coefficients can then be expressed as,The total reflection coefficient can be expressed as,12,Since,and,The total reflection coefficient is then,The numerator of this expression can be simplified as,13,This analysis show
8、s that the matching property of the quarter-wave transformer comes about by properly selecting the characteristic impedance and length of the matching section so that the superposition of all the partial reflections add to zero.,14,The theory of small reflections,I. Single-Section Transformer,The pa
9、rtial reflection and transmission coefficients are,15,The total reflection coefficient as an infinite sum of partial reflections and transmissions as follows:,16,Now if the discontinuities between the impedances Z1, Z2 and Z2, ZL are small, then |G1G3|1, so,This result states the intuitive idea that
10、 the total reflection is dominated by the reflection from the initial discontinuity between Z1 and Z2, and the first reflection from the discontinuity between Z2 and ZL.,The e-2jq term accounts for the phase delay when the incident wave travels up and down the line.,17,II. Multisection Transformer,M
11、ultisection transformer consists of N equal-length (commensurate) sections of transmission lines.,Partial reflection coefficients can be defined at each junction, as follows:,18,We also assume that all Zn increase or decrease monotonically across the transformer, and that ZL is real.,The overall ref
12、lection coefficient can be approximated as,Assume that G0=GN, G1=GN-1, etc. (symmetrical),For N even,19,For N odd,The importance of these results lies in the fact that we can synthesize any desired reflection coefficient response as a function of frequency (q), by properly choosing the Gns and using
13、 enough sections (N).,This should be clear from the realization that a Fourier series can approximate an arbitrary smooth function, if enough terms are used.,20,Binomial multisection matching transformers,The passband response of a binomial matching transformer is optimum in the sense that, for a gi
14、ven number of sections, the response is as flat as possible near the design frequency maximally flat.,This type of response is designed, for an N-section transformer, by setting the first N-1 derivatives of |G(q)| to zero, at the center frequency f0.,Such a response can be obtained if we let,The mag
15、nitude is,21,At q =p / 2 and n = 1, 2, , N-1,q =p / 2 corresponds the center frequency f0, for which l =l/4.,The constant A can be determined by letting f 0.,All sections are of zero electrical length at f = 0.,Then the constant A can be written as:,22,binomial expansion,with,The key step is now to
16、equate the desired passband response to the actual response as:,The characteristic impedance Zn can be found by,23,Since we assumed that the Gn are small, we can write,Therefore,This technique has the advantage of ensuring self-consistency, in that ZN+1 will be equal to ZL, as it should.,24,The band
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 射频电路理论与技术Lectrue 6定向耦合器等ppt课件 射频 电路 理论 技术 Lectrue 定向耦合器 ppt 课件
链接地址:https://www.31ppt.com/p-1336658.html