氧化锆分析仪原理及常见故障处理方法课件.pptx
《氧化锆分析仪原理及常见故障处理方法课件.pptx》由会员分享,可在线阅读,更多相关《氧化锆分析仪原理及常见故障处理方法课件.pptx(34页珍藏版)》请在三一办公上搜索。
1、氧化锆分析仪原理及常见故障处理方法,氧化锆分析仪原理及常见故障处理方法,摘 要,重点阐述氧化锆氧分析仪表的工作原理,介绍了几种常用氧化锆分析仪的结构,简要分析了氧化锆分析仪常见故障产生的原因,并针对这些故障现象提出了相应的处理方法。 关键词 氧化锆 氧含量 常见故障 处理方法,摘 要 重点阐述氧化锆氧分析仪表的工作原理,介绍了几种常用,前言,氧化锆分析仪是控制炉窑经济燃烧不可缺少的重要在线仪表,通过它对锅炉中氧含量的检测,可有效地控制锅炉燃烧的热效率,实现节能降耗,减少环境污染和延长炉龄的作用。本文通过对氧化锆分析仪工作原理的介绍,阐明了氧化锆分析仪使用过程中常见故障的原因及相应的处理方法。,
2、前言 氧化锆分析仪是控制炉窑经济燃烧不可缺少的重要在线仪表,,1.氧化锆检测原理综述,1.1检测原理按照窑炉烟气温度的不同,氧化锆氧分析仪可分为:中低温型和高温型两种,它们分别适用在烟气温度为0650和700900的烟气环境中,虽然这两种氧化锆氧分析仪的工作温度不同,但它们的工作原理是一样的,它们都采用电化学中的电位分析法来进行检测,同样遵循能斯特方程(Nernst)即:式中:E:氧浓差电势R(摩尔气体常数)=8.315F(法拉第常数)=96500T(热力学温度):KPO:空气氧含量P:待测氧含量n:参加反应物质的电子数,对氧而言为4。也就是说,氧化锆氧分析仪是依据氧浓差电势的大小来测量氧含量
3、的。其电势是由氧电池提供的,该电池可以表示为:(+)PO,Pt | ZrO2 | Y2O3 | Pt,P(-)在上式中,ZrO2 | Y2O3表示一根氧化锆管或一片氧化锆片。氧化锆管是一端开口一端封闭的管子,在管子的内外壁各涂有一条铂电极测量电极和参比电极,其结构如图1:,1.氧化锆检测原理综述 1.1检测原理,图1 氧化锆测氧电池结构原理图,图1 氧化锆测氧电池结构原理图,这里,我们注意到氧化锆管的材质并非纯的氧化锆(ZrO2)而是氧化锆和氧化钇(Y2O3)的混合物。这是因为纯氧化锆晶体属单斜晶体在高温下要发生相变,它是不稳定并且也不导电的。只有在氧化锆中掺入10%的氧化钇(Y2O3),原纯
4、氧化锆中的四价锆离子被三价钇离子取代形成了具有氧离子空穴的立方体晶格形式的晶体结构,从而使新的氧化锆在高温下稳定并且不发生相变,这种新的氧化锆叫稳定氧化锆,俗称氧化锆。,这里,我们注意到氧化锆管的材质并非纯的氧化锆(ZrO2)而是,这样,在氧化锆的参比电极边(图一中管内PO侧)流过参比空气;在测量电极边(图一中管外P侧)流过待测气体,例如烟气。当测氧电池处于高温时(650)电池导通,便形成了一个氧浓差电池。此时,如果参比侧(空气)的氧分压PO大于待测气体氧分压P,则PO侧的氧分子渗入多孔铂电极,在铂电极的催化作用下夺取电子变成氧离子,在氧化锆中一个氧离子进入离子空穴并通过离子空穴迅速迁移到测量
5、边,放出电子变成氧分子,从另一侧铂电极中放出来。其过程如图2所示。,这样,在氧化锆的参比电极边(图一中管内PO侧)流过参比空气;,图2 氧化锆氧浓差电池工作原理图,图2 氧化锆氧浓差电池工作原理图,在此过程中, PO侧的氧分子在铂电极上将发生如下反应: O2 + 4e 2O2-即氧分子从电极上夺取4个电子形成2个氧离子,进入氧化锆管的氧离子空穴,结果使参比电极带正电。氧离子通过空穴迅速迁移到测量变P侧,将4个电子交于测量电极,变成一个氧分子,使测量电极带负电,其反应为:2O2- O2 + 4e显然,上述电极反应在两电极间产生了一个电势。在该电势作用下,又将促使部分O2-作反向运动,当氧浓差引起
6、的氧离子正向迁移量等于电势引起的反向迁移量时,该电池达到平衡状态。于是,在两电极间便形成了一个与氧浓差有关的电势即氧浓差电势,该电势的大小可由能斯特方程求出。,在此过程中, PO侧的氧分子在铂电极上将发生如下反应:,由此,在已知RFn和PO以及固定T的情况下,只要检测出氧浓差电势就可以利用能斯特方程计算出待测烟气中的氧含量了。在实际工作中为了计算的方便,将计算式中的自然对数换算成常用对数,则能斯特方程变形为:(1)如果将温度选定在750(绝对温度T为1023K),则(1)式简化为:(2) 根据(2)式就可以计算得到750(绝对温度T为1023K)时,氧化锆氧浓差电势与待测氧含量的对照表。同理,
7、利用(1)式也可以求出不同工作温度下的氧化锆氧浓差电势与待测氧含量的对照表,其表如下:,由此,在已知RFn和PO以及固定T的情况下,只要检测出氧,氧化锆分析仪原理及常见故障处理方法课件,由上表我们便可以非常方便地根据氧浓差电势求得待测气体中的氧含量了。由此得到这样的结论:即在氧化锆工作温度下随着待测气体中的氧含量的增加氧浓差电势也随之呈常用对数关系逐渐增加,当待测气体中的氧含量低于空气中的氧含量(20.6)时,氧浓差电势为负值,当待测气体中的氧含量等于空气中的氧含量(20.6)时,氧浓差电势为为零,当待测气体中的氧含量高于空气中的氧含量(20.6)时,氧浓差电势为正值。其关系曲线见(图3)。由
8、(图3)可以看出在氧化锆工作温度下,当待测气体中的氧含量低于空气中的氧含量(20.6)时,随着待测气体中的氧含量的逐渐增大,温度的变化对氧浓差电势大小的影响逐渐减小,同样,在此情况下随着待测气体中的氧量的逐渐降低,温度的变化对氧浓差电势大小的影响逐渐增大,因此氧化锆工作温度的严格控制是氧化锆氧分析仪准确测量的重要条件之一。,由上表我们便可以非常方便地根据氧浓差电势求得待测气体中的氧含,氧化锆分析仪原理及常见故障处理方法课件,1.2氧化锆氧分析仪转换器工作原理,氧化锆氧分析仪转换器是将氧化锆检测器检测到的氧浓差电势转换成与待测气体中的氧含量呈线性关系的420mA标准信号输出至显示仪表或控制仪表。
9、同时,对氧化锆的工作温度进行检测和严格的恒温控制。氧化锆氧分析仪转换器一般由:恒温控制部分氧浓差电势转换部分和电源部分组成。其作用如下:,1.2氧化锆氧分析仪转换器工作原理 氧化锆氧分析仪转换器是将,1.2.1恒温控制部分,连续检测氧化锆锆头温度,对氧化锆的工作温度进行严格的恒温控制,使之恒定在2(氧化锆锆头工作温度一般选定在750)范围内。同时设置保护电路,对氧化锆锆头进行超温保护。,1.2.1恒温控制部分连续检测氧化锆锆头温度,对氧化锆的工作,1.2.2氧浓差电势转换部分,将氧化锆锆头检测到的氧浓差电势转换成与待测气体中的氧含量呈线性关系的420mA标准信号输出至显示仪表或控制仪表,同时在
10、转换器上显示待测气体中的氧含量。,1.2.2氧浓差电势转换部分将氧化锆锆头检测到的氧浓差电势转,1.2.3电源部分,超温保护温控输出过零触发放大器加法器电流输出氧探头放大器A/D转换数码显示查表D/A转换显示冷端补偿比较器比较器加热器为氧化锆氧分析仪转换器各部分提供电源。,1.2.3电源部分超温保护温控输出过零触发放大器加法器电流输,图4 氧化锆氧分析仪转换器基本工作原理简图,图4 氧化锆氧分析仪转换器基本工作原理简,氧化锆氧分析仪转换器一般采用模拟电路和数字电路以及单片机等集成电路组成,电路相对简化,并且尽量压缩阻容元件的使用,从而使调整点减少,基本实现了免维护的功能。它与不同结构的氧化锆检
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 氧化锆 分析 原理 常见故障 处理 方法 课件
链接地址:https://www.31ppt.com/p-1334729.html