复数的几何意义用ppt课件.ppt
《复数的几何意义用ppt课件.ppt》由会员分享,可在线阅读,更多相关《复数的几何意义用ppt课件.ppt(35页珍藏版)》请在三一办公上搜索。
1、3.3 复数的几何意义,在几何上,我们用什么来表示实数?,想一想?,实数的几何意义,类比实数的表示,在几何上可以用什么来表示复数?,实数可以用数轴上的点来表示。,实数,数轴上的点,(形),(数),一一对应,回忆,复数的一般形式?,Z=a+bi(a, bR),实部!,虚部!,一个复数由什么确定?,复数z=a+bi,有序实数对(a,b),直角坐标系中的点Z(a,b),x,y,o,b,a,Z(a,b),建立了平面直角坐标系来表示复数的平面,x轴-实轴,y轴-虚轴,(数),(形),-复数平面 (简称复平面),一一对应,z=a+bi,复数的几何意义(一),一一对应,一一对应,(A)在复平面内,对应于实数
2、的点都在实轴上(B)在复平面内,对应于纯虚数的点都在虚轴 上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数。,例1.,下列命题中的假命题是( ),D,2“a=0”是“复数a+bi(a,bR)是纯虚数”的( ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件,C,3“a=0”是“复数a+bi (a,bR)所对应的点在虚轴上”的( ) (A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)不充分不必要条件,A,4.复数z与 所对应的点在复平面内( )(A)关于x轴对称 (B)关于y轴对称(C)关
3、于原点对称(D)关于直线y=x对称,A,例2:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围。,一种重要的数学思想:数形结合思想,变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值。,解:复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),,(m2+m-6)-2(m2+m-2)+4=0,,m=1或m=-2,复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,复数的几何意义(二),x,y,o,b,a
4、,Z(a,b),z=a+bi,x,O,z=a+bi,y,复数的绝对值,(复数的模),的几何意义:,Z (a,b),对应平面向量 的模| |,即复数 z=a+bi在复平面上对应的点Z(a,b)到原点的距离。,| z | =,思考: | z | 与z, Z有什么关系?,例3:求下列复数的模:(1)z1=-5i (2)z2=-3+4i(3)z3=5-5i,(4)z4=1+mi(mR) (5)z5=4a-3ai(a0),( 5 ),( 5 ),(5a ),解:,实数能比较大小,数系扩充到复数后,Z1,Z2 一般不能比较大小,但复数的模是非负数,可以比较大小。,设z=x+yi(x,yR),满足|z|=5
5、(zC)的复数z对应的点在复平面上将构成怎样的图形?,以原点为圆心,5为半径的圆上,思考:,(1)满足|z|=5(zC)的z值有几个?,(2)这些复数对应的点在复平面上构成怎样的图形?,5,x,y,O,设z=x+yi(x,yR),变式:满足3|z|5(zC)的复数z对应的点在复平面上将构成怎样的图形?,5,5,5,5,3,3,3,3,以原点为圆心,半径3至5的圆环内(不含边界),练习:P70,2 P73,4,复数z=a+bi,直角坐标系中的点Z(a,b),一一对应,平面向量,一一对应,一一对应,小结,1.,| z |,2.,作业:,P70 1、3,3.3 复数的几何意义,复数z=a+bi,直角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复数 几何 意义 ppt 课件
链接地址:https://www.31ppt.com/p-1326263.html