互为反函数的函数图像之间的关系ppt课件.ppt
《互为反函数的函数图像之间的关系ppt课件.ppt》由会员分享,可在线阅读,更多相关《互为反函数的函数图像之间的关系ppt课件.ppt(16页珍藏版)》请在三一办公上搜索。
1、,互为反函数的函数图像之间的 关 系 及 应 用,余江一中新校园学生餐厅,授课教师:余江一中 寿青文,1.叙述反函数的定义:,一般地,函数y=f(x)(xA )中,设它的值域为C,我们根据这个函数中x,y的关系, 用y把x表示出来得到x = (y).如果对于y在C中的任何一个值,通过x = (y)在A中都有唯一的值和它对应,那么, x = (y)就表示y是自变量,x是自变量y的函数,这样的函数x = (y),(yC)叫做函数y=f(x) ,(xA)的反函数,记作 x = f 1(y)字母x、y互换,得 y=f-1(x),一、复习提问:,求反函数的基本步骤:,.由y=f(x)出发,用y表示x,解
2、出x = f1(y);,.将x,y互换得到y = f1(x);,.指出反函数的定义域(即原函数的值域).,反解,互换,写出定义域,2、求反函数有哪些基本步骤?,解:函数y=2x2-3(xR)没有反函数;,因为它不是由一一映射构成的函数;,当把定义域改写为0,+)或(-,0时它才有反函数.,4、函数y=2x2-3(xR)有没有反函数?为什么?如何改写定义域才能使其有反函数?,3、点P(a,b)关于直线y=x对称的对称点P的坐标为 .,(b, a),(即横坐标与纵坐标对换位置),例1 、求函数y=3x-2(xR)的反函数,并且画出原来的函数和它的反函数的图象。,解: y=3x-2,函数y=3x-2
3、(xR)的反函数为y=,x=,二、讲授新课,首先我们来研究互为反函数的函数图像间的关系,(xR),互为反函数的两个函数的图象之间是否具有某种对称关系?,它们的两个函数图象是以直线y=x为对称轴的对称图形。,给出定理:,函数 y = f ( x ) 的图象与它的反函数 y = f 1 ( x ) 的图象关于直线 y = x 对称。,问题:,回答:,注:1)这个结论是由特殊到一般归纳出来的,并未经过严格证明,为不增加难度,现在不作证明。,2)这个结论是在同一坐标系下,且横轴(x轴)与纵轴(y轴)长度单位一致的情况下得出的。,3)函数y=f(x)与函数y=f1(x)互为反函数,图像关于直线y = x
4、对称;,函数y=f(x)与函数x=f1(y)互为反函数,图像相同。,4)如果两个函数的图象关于y = x 对称,那么这两个函数互为反函数;,函数y=f-1(x)与函数x=f-1(y)是同一函数,图像关于直线y=x对称,例2 、求函数y=x3(xR)的反函数,并画出原来的函数和它的反函数的图象.,由函数,(x R),,得,所以函数,(x R)的反函数是:,解:,注:当已知函数y=f(x)的图象时,利用所学定理,作出它关于直线y=x对称的图象,就是反函数y=f1(x)的图象。,练习1: 画出函数y=x2(x0,+)的图象,再利用对称性画出它的反函数的图象.,例3、若点P(1,2)在函数 的图象上,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 互为 反函数 函数 图像 之间 关系 ppt 课件
![提示](https://www.31ppt.com/images/bang_tan.gif)
链接地址:https://www.31ppt.com/p-1323268.html