卷积神经网络讲义ppt课件.ppt
《卷积神经网络讲义ppt课件.ppt》由会员分享,可在线阅读,更多相关《卷积神经网络讲义ppt课件.ppt(28页珍藏版)》请在三一办公上搜索。
1、卷积神经网络,主要内容,卷积神经网络诞生背景与历程 卷积神经网络的结构 卷积神经网络应用LeNet-5手写数字识别,深度学习的优势,深度学习通过学习一种深层非线性网络结构,只需简单的网络结构即可实现复杂函数的逼近,并展现了强大的从大量无标注样本集中学习数据集本质特征的能力。深度学习能够获得可更好地表示数据的特征,同时由于模型的层次深)、表达能力强,因此有能力表示大规模数据。对于图像、语音这种特征不明显(需要手工设计且很多没有直观的物理含义)的问题,深度模型能够在大规模训练数据上取得更好的效果。,卷积神经网络(ConvolutionalNeuralNetworks:CNN)是人工神经网络(ANN
2、)的一种,是深度学习的一种学习算法。它在图像识别和分类、自然语言处理广告系统中都有应用。CNNs它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能。CNNs作为一个深度学习架构提出是为了最小化数据的预处理要求。在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征。这个方法能够获取对平移、缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础的特征,例如定向边缘。,卷积神经网络的结构,卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而
3、每个平面由多个独立神经元组成。,输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。,C层为卷积层(Convolution),每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来,S层是采样层(subsampling)也叫池化层
4、(pooling),网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。pooling的目的就是为了使参数量减少,使得特征映射具有某种不变性(旋转、平移、伸缩等)。,参数减少与权值共享,如果我们有1000 x1000像素的图像,有1百万个隐层神经元,那么他们全连接的话(每个隐层神经元都连接图像的每一个像素点),就有1000 x1000 x1000000=1012个连接,也就是1012个权值参数。然而图像的空间联系是局部的,就像人是通过一个局部的感受野去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些
5、感受不同局部的神经元综合起来就可以得到全局的信息了。这样,我们就可以减少连接的数目,也就是减少神经网络需要训练的权值参数的个数了。假如局部感受野是10 x10,隐层每个感受野只需要和这10 x10的局部图像相连接,所以1百万个隐层神经元就只有一亿个连接,即108个参数。比原来减少了四个0(数量级),这样训练起来就没那么费力了。 隐含层的每一个神经元都连接10 x10个图像区域,也就是说每一个神经元存在10 x10=100个连接权值参数。那如果我们每个神经元这100个参数是相同,每个神经元用的是同一个卷积核去卷积图像,这就是权值共享。,一方面,重复单元能够对特征进行识别,而不考虑它在可视域中的位
6、置。另一方面,权值 共享使得我们能更有效的进行特征抽取,因为它极大的减少了需要学习的自由变量的个数。通过控制模型的规模,卷积网络对视觉问题可以具有很好的泛化能力。,权值共享的优点:,卷积神经网络应用,LeNet-5手写数字识别,C1层:输入图片大小: 32*32卷积窗大小: 5*5卷积窗种类: 6输出特征图数量: 6输出特征图大小: 28*28神经元数量: 4707 连接数: 122304 可训练参数: 156,C1层是一个卷积层,卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低干扰,由6个特征图Feature Map构成。特征图中每个神经元与输入中5*5的邻域相连。特
7、征图的大小为28*28,这样能防止输入的连接掉到边界之外。C1有156个可训练参数(每个滤波器5*5=25个unit参数和一个bias参数,一共6个滤波器,共(5*5+1)*6=156个参数),共(5*5+1)*6*(28*28)=122,304个连接。,S2层:输入图片大小: (28*28)*6卷积窗大小: 2*2卷积窗种类: 6输出下采样图数量: 6输出下采样图大小:(14*14)*6神经元数量: 1176连接数: 5880可训练参数: 12,S2层是一个采样层,利用图像局部相关性的原理,对图像进行子抽样,可以减少数据处理量同时保留有用信息,有6个14*14的特征图。特征图中的每个单元与C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 卷积 神经网络 讲义 ppt 课件
链接地址:https://www.31ppt.com/p-1321436.html