原理第3章合金的脱溶沉淀与时效ppt课件.ppt
《原理第3章合金的脱溶沉淀与时效ppt课件.ppt》由会员分享,可在线阅读,更多相关《原理第3章合金的脱溶沉淀与时效ppt课件.ppt(56页珍藏版)》请在三一办公上搜索。
1、第七章 合金的脱溶沉淀与时效,第一节 脱溶过程和脱溶物的结构 第二节 脱溶热力学和动力学 第三节 脱溶后的显微组织 第四节 脱溶时效时的性能变化,第七章 合金的脱溶沉淀与时效,定义:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 条件:合金在平衡状态图上有固溶度的变化,并且固溶度随温度降低而减少 。 固溶处理:将双相组织(+)加热到固溶度线以上某一 温度(如 T1)保温足够时间,获得均匀的单相固溶体相的处理工艺。 时效:合金在脱溶过程中,其机械性能、物理性能和化学性能等均随之发生变化,这种现象称为时效。,第七章 合金的脱溶沉淀与
2、时效,固溶处理与时效处理的工艺过程示意图,第七章 合金的脱溶沉淀与时效,若将经过固溶处理后的 C0成分合金急冷,抑制相分解,则在室温下获得亚稳的过饱和相固溶体。 这种过饱和固溶体在室温较高温度下等温保持时,将发生脱溶,但脱溶相往往不是状态图中的平衡相,而是亚稳相或溶质原子聚集区。 这种脱溶可显著提高合金的强度和硬度,称为沉淀强(硬)化或时效强(硬)化,是强化合金材料的重要途径之一。,第七章 合金的脱溶沉淀与时效,析出:指某些合金的过饱和固溶体在室温下放置或将它加热到一定温度,溶质原子会在固溶体点阵中的一定区域内聚集或组成第二相的现象。析出又称为沉淀 时效合金:能够发生时效现象的合金称为时效型合
3、金或简称为时效合金。 自然时效或室温时效 人工时效,第七章 合金的脱溶沉淀与时效,一、脱溶过程和脱溶物的结构 合金经固溶处理并淬火获得亚稳过饱和固溶体,若在足够高的温度下进行时效, 最终将沉淀析出平衡脱溶相。但在平衡相出现之前,根据合金成分不同会出现若干个亚稳脱溶相或称为过渡相。 以 A1-4%Cu合金为例: 室温平衡组织:相固溶体和相 (Cu Al 2)。 脱溶顺序:G.P.区相相相。 即在平衡相()出现之前, 有三个过渡脱溶物相继出现。 下面以 A1-Cu合金为例,介绍时效过程中过渡相和平衡相的形成及其结构。,第七章 合金的脱溶沉淀与时效,1)G.P.区的形成及其结构 Guinier 和
4、Preston 各自独立地分析了 Al-Cu 合金时效初期的单晶体,发现在母相 固溶体的100面上出现一个原子层厚度的 Cu 原子聚集区,由于与母相保持共格联系,Cu原子层边缘的点阵发生畸变,产生应力场,成为时效硬化的主要原因 。 后来将这种在若干原子层范围内的溶质原子聚集区即称为 Guinier-Preston区,简称 G.P. 区。,第七章 合金的脱溶沉淀与时效,G.P.区是溶质原子聚集区。它的点阵结构与过饱和固溶体的点阵结构相同。换言之,当从过饱和固溶体形成G.P.区时,晶体结构并未发生变化,所以一般把它当作“区”,而不把它当作新的“相”看待。G.P.区与过饱和固溶体(基体)是完全共格的
5、。这种共格关系是靠正应变维持的,属于第一类共格。 G.P.区的特点: 在过饱和固溶体的分解初期形成,且形成速度很快,通常为均匀分布; 其晶体结构与母相过饱和固溶体相同,并与母相保持第一类共格关系; 在热力学上是亚稳定的。,第七章 合金的脱溶沉淀与时效,Al-Cu合金中 G.P.区的显微组织及其结构模型,第七章 合金的脱溶沉淀与时效,2)过渡相的形成及其结构 a)相的形成与结构 G .P.区形成之后,当时效时间延长或时效温度提高时,将形成过渡相。从 G.P. 区转变为过渡相的过程可能有两种情况: 一是以 G.P.区为基础逐渐演变为过渡相,如 A1-Cu 合金; 二是与 G.P.区无关,过渡相独立
6、地形核长大,如 Al-Ag 合金。 在 A1-Cu合金中,随着时效的进行,一般是以 G.P. 区为基础,沿其直径方向和厚度方向(以厚度方向为主)长大形成过渡相 相。,第七章 合金的脱溶沉淀与时效,相的晶胞有五层原子面,中央一层为 100Cu原子层,最上和最下的两层为 100A1 原子层, 而中央一层与最上、最下两层之间的两个夹层则由 Cu 和 A1 原子混合组成(Cu 约为 2025),总成分相当于 CuAl2。 相与基体相仍保持完全共格关系。相仍为薄片状,片的厚度约 0.82nm,直径约 1415nm。 随着相的长大,在其周围基体中产生的应力和应变也不断地增大。 相具有正方点阵,点阵常数为:
7、 ab4.04,与母相相同 c7.8 ,较相的两倍(8.08 )略小,第七章 合金的脱溶沉淀与时效,第七章 合金的脱溶沉淀与时效,b)相的形成与结构 在 A1-Cu 合金中,随着时效过程的进展,片状相周围的共格关系部分遭到破坏,相转变为新的过渡相相。 相也具有正方点阵,点阵常数为 : ab4.04 c5.8 。 相的成分与 CuAl2相当。 相的点阵虽然与基体相不同,但彼此之间仍然保持部分共格关系,两点阵各以其001面联系在一起。 相和相之间具有下列位向关系 :,第七章 合金的脱溶沉淀与时效,A1-Cu 合金的相以及相与基体的部分共格关系示意图,相与基体相保持部分共格关系,而相与相则保持完全共
8、格关系,这是两者的主要区别之一。,第七章 合金的脱溶沉淀与时效,3)平衡相的形成及其结构 在 A1-Cu 合金中,随着相的成长,其周围基体中的应力和应变不断增大,弹性应变能也越来越大,因而相逐渐变得不稳定。 当相长大到一定尺寸后将与 相完全脱离,成为独立的平衡相,称为相。相也具有正方点阵,不过其点阵常数与 相及相相差甚大。相的点阵常数为: ab6.066,c4.874。 相与基体无共格关系,呈块状。,第七章 合金的脱溶沉淀与时效,几种时效硬化型合金的析出系列,第七章 合金的脱溶沉淀与时效,二、脱溶热力学和动力学 1、脱溶的热力学分析 脱溶时的能量变化符合一般的固态相变规律。 脱溶驱动力:新相(
9、(C 1)+) 和母相(C 0)的化学自由能差。 脱溶阻力:形成脱溶相的界面能和应变能。 A1一 Cu 合金在某一温度下脱溶时各个阶段的化学自由能成分关系下图所示。,第七章 合金的脱溶沉淀与时效,Al-Cu 系合金析出过程各个阶段在某一等温温度下的 自由能-成分关系曲线示意图,第七章 合金的脱溶沉淀与时效,可用公切线法确定基体和脱溶相的成分分别为C1和 C G.P. 。 各公切线与过 C 0的垂线的交点 b、c、d 和 e 分别代表 C 0成分母相中形成 G.P.区、相、 相和相时两相的系统自由 能。 采用图解法可求得形成 G.P. 区、和相的相变驱动力分别为: Gl ab G2 ac G3
10、ad G4 a e,第七章 合金的脱溶沉淀与时效,可见,GlG 2 G 3G 4,即: 形成 G.P.区时的相变驱动力最小 析出平衡相时的相变驱动力最大 尽管形成相时相变驱动力最大,但由于相与基体非共格,形核和长大时的界面能较大,所以不易形成。 而 G.P.区与基体完全共格,形核和长大时的界面能较小,并且 G.P.区与基体间的浓度差较小,较易通过扩散形核并长大,所以,一般过饱和固溶体脱溶时首先形成 G.P.区。,第七章 合金的脱溶沉淀与时效,过饱和固溶体脱溶时,脱溶相的临界晶核尺寸和临界晶核形成功也随体积自由能差的增大而减小。 过饱和固溶体脱溶时,溶质元素含量较多的合金其体积自由能差较大。因此
11、,在时效温度相同时,随溶质元素含量增加,即固溶体过饱和度增大,脱溶相的临界晶核尺寸将减小。而在溶质元素含量相同时,随时效温度降低,固溶体过饱和度增大,临界晶核尺寸亦减小。,第七章 合金的脱溶沉淀与时效,2、脱溶动力学及其影响因素 1)等温脱溶曲线 过饱和固溶体的脱溶驱动力是化学自由能差,脱溶过程是通过原子扩散进行的。因此与珠光体及贝氏体转变一样,过饱和固溶体的等温脱溶动力学曲线也呈 C字形,如下图 。,第七章 合金的脱溶沉淀与时效,从等温脱溶 C曲线可以看出,无论是G.P.区、过渡相和平衡相,都要经过一定的孕育期后才能形成。随等温温度升高,原子扩散迁移率增大,脱溶速度加快;但温度升高时固溶体的
12、过饱和度减小,临界晶核尺寸增大,因而又有使脱溶速度减慢的趋势,所以脱溶动力学曲线呈 C 字形。在接近 TG.P.、T 、T 温度下需要经过很长时间才能分别形成 G.P.区、相、相。,第七章 合金的脱溶沉淀与时效,在T1温度下时效时,时效初期形成 G.P.区,经过一段时间后形成过渡相,最终形成平衡相; 在T2温度时效时,仅形成过渡相和平衡相; 而在T3温度时效时,则仅形成平衡相。 由此可归纳出脱溶过程的一个普遍规律:时效温度越高,固溶体的过饱和度越小,脱溶过程的阶段也越少;而在同一时效温度下合金的溶质原子浓度越低,其固溶体过饱和度就越小,则脱溶过程的阶段也就越少。,第七章 合金的脱溶沉淀与时效,
13、2)影响脱溶动力学的因素 凡是影响形核率和长大速度的因素,都会影响过饱和固溶体脱溶过程动力学。 (1)晶体缺陷的影响 试验发现,实际测得的 A1-Cu合金中 G.P.区的形成速度比按 Cu在 A1 中的扩散系数计算出的形成速度高得多。 这是因为固溶处理后淬火冷却所冻结下来的过剩空位加快了 Cu原子的扩散。即 G.P.区形成时,Cu原子是按空位机制扩散的:,第七章 合金的脱溶沉淀与时效,当固溶处理后的冷却速度足够快,在冷却过程中空位未发生衰减时,扩散系数 D可由下式求出: 可见,固溶处理加热温度愈高,加热后的冷却速度愈快,所得的空位浓度就愈高,G.P.区的形成速度也就愈快。,第七章 合金的脱溶沉
14、淀与时效,A1-Cu 合金中的相、相及相的析出也是需要通过 Cu 原子的扩散。 位错、层错以及晶界等晶体缺陷具有与空位相似的作用,往往成为过渡相和平衡相的非均匀形核的优先部位。其原因: 一是可以部分抵消过渡相和平衡相形核时所引起的点阵畸变; 二是溶质原子在位错处发生偏聚,形成溶质高浓度区,易于满足过渡相和 平衡相形核时对溶质原子浓度的要求。 塑性形变可以增加晶内缺陷,故固溶处理后的塑性形变可以促进脱溶过程。,第七章 合金的脱溶沉淀与时效,(2)合金成分的影响 在相同的时效温度下,合金的熔点越低,脱溶速度就越快。一般来说,随溶质浓度(固溶体过饱和度)增加,脱溶过程加快。溶质原子与溶剂原子性能差别
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 原理 合金 沉淀 时效 ppt 课件
链接地址:https://www.31ppt.com/p-1320112.html