压电式传感器(1)汇总ppt课件.ppt
《压电式传感器(1)汇总ppt课件.ppt》由会员分享,可在线阅读,更多相关《压电式传感器(1)汇总ppt课件.ppt(98页珍藏版)》请在三一办公上搜索。
1、第5章 压电式传感器,5.1 压电效应及压电材料,1,5.2 压电式传感器的等效电路,5.3 压电式传感器的测量电路,3,5.4 压电式传感器的应用,4,2,概述,压电式传感器的工作原理是基于某些介质材料的压电效应,是典型的有源传感器。当某些材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,重量轻,工作频带宽、灵敏度高、工作可靠、测量范围广等特点,因此在各种动态力、 机械冲击与振动的测量,以及声学、医学、力学、宇航等方面都得到了非常广泛的应用。,某些物质沿某一方向受到外力作用时,会产生变形,同时其内部产生极化现象,此时在这种材料的两个表面产生符号相反的电荷,
2、当外力去掉后,它又重新恢复到不带电的状态,这种现象被称为压电效应。当作用力方向改变时,电荷极性也随之改变。这种机械能转化为电能的现象称为“正压电效应”或“顺压电效应”。,5.1 压电效应及压电材料,正(顺)压电效应示意图,反之,当在某些物质的极化方向上施加电场,这些材料在某一方向上产生机械变形或机械压力;当外加电场撤去时,这些变形或应力也随之消失。这种电能转化为机械能的现象称为“逆压电效应”或“电致伸缩效应”。,图5-1 压电效应的可逆性,5.1 压电效应及压电材料,石英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压电材料。压电材料可以分为两大类:压电晶体和压电陶瓷。前者为晶体,后者为极化处理的多
3、晶体。他们都具有较大的压电常数,机械性能良好,时间稳定性好,温度稳定性好等特性,所以是较理想的压电材料。,5.1 压电效应及压电材料,压电材料的主要特性参数有: (1) 压电常数:压电常数是衡量材料压电效应强弱的参数,它直接关系到压电输出的灵敏度。(2) 弹性常数:压电材料的弹性常数、 刚度决定着压电器件的固有频率和动态特性。(3) 介电常数:对于一定形状、尺寸的压电元件,其固有电容与介电常数有关;而固有电容又影响着压电传感器的频率下限。 (4) 机械耦合系数:在压电效应中,其值等于转换,输出能量(如电能)与输入的能量(如机械能)之比的平方根; 它是衡量压电材料机电能量转换效率的一个重要参数。
4、(5)电阻压电材料的绝缘电阻:将减少电荷泄漏,从而改善压电传感器的低频特性。(6) 居里点:压电材料开始丧失压电特性的温度称为居里点。,5.1 压电效应及压电材料,如图所示为天然石英晶体,其结构形状为一个六角形晶柱,两端为一对称棱锥。,5.1.1 石英晶体,在晶体学中,可以把将其用三根互相垂直的轴表示,其中,纵轴Z称为光轴,通过六棱线而垂直于光铀的X铀称为电轴,与X-X轴和Z-Z轴垂直的Y-Y轴 (垂直于六棱柱体的棱面)称为机械轴。,如果从石英晶体中切下一个平行六面体并使其晶面分别平行于Z-Z、Y-Y、X-X轴线。晶片在正常情况下呈现电性。通常把沿电轴(X轴)方向的作用力产生的压电效应称为“纵
5、向压电效应”,把沿机械轴(Y轴)方向的作用力产生的压电效应称为“横向压电效应”,沿光轴(Z轴)方向的作用力不产生压电效应。沿相对两棱加力时,则产生切向效应。压电式传感器主要是利用纵向压电效应。,石英晶体具有压电效应,是由其内部分子结构决定的。图-2是一个单元组体中构成石英晶体的硅离子和氧离子,在垂直于z轴的xy平面上的投影,等效为一个正六边形排列。 图中“”代表硅离子Si4+, “”代表氧离子O2-。,石英晶体产生压电效应的微观机理,图5-2 硅氧离子的排列示意图,当石英晶体未受外力作用时,正、负离子正好分布在正六边形的顶角上,形成三个互成120夹角的电偶极矩P1、P2、P3。 如图5-3(a
6、)所示。,因为P = qL(q为电荷量,L为正负电荷之间的距离),此时正负电荷中心重合,电偶极矩的矢量和等于零,即 P1+P2+P30所以晶体表面不产生电荷,呈电中性。,在y、z方向上的分量为: (P1+P2+P3)y = 0 (P1+P2+P3)z= 0,当晶体受到沿x方向的压力(F x 0,当晶体受到沿x方向的拉力(Fx 0)作用时,其变化情况如图5-3(c)所示。电偶极矩P1增大, P2、 P3减小,此时它们在x、y、z三个方向上的分量为 (P1 +P2 +P3) x0 (P1+ P2+ P3)y =0 (P1 +P2 +P3)z =0在x轴的正向出现负电荷,在y、z方向依然不出现电荷。
7、,可见,当晶体受到沿x(电轴)方向的力Fx 作用时,它在x方向产生正压电效应,而y、z方向则不产生压电效应。,晶体在y轴方向受力Fy作用下的情况与Fx 相似。当Fy 0时,晶体的形变与图5-3(b)相似;当Fy 0时,则与图5-3(c)相似。由此可见,晶体在y(即机械轴)方向的力 Fy作用下,在x方向产生正压电效应,在y、z方向同样不产生压电效应。,晶体在z轴方向受力Fz的作用时,因为晶体沿x方向和沿y方向所产生的正应变完全相同,所以,正、负电荷中心保持重合,电偶极矩矢量和等于零。这就表明,在沿z(即光轴)方向的力Fz 作用下,晶体不产生压电效应。,5.1 压电效应及压电材料,若从晶体上沿y方
8、向切下一块如下图所示晶片,当在电轴方向施加作用力 时,在与电轴x垂直的平面上将产生电荷Qx,其大小为式中: x方向受力的压电系数; 作用力。若在同一切片上,沿机械轴y方向施加作用力 ,则仍在与x轴垂直的平面上产生电荷Qy,其大小为:,5.1 压电效应及压电材料,式中: y轴方向受力的压电系数, a、b晶体切片长度和厚度。电荷Qx和Qy的符号由所受力的性质决定。,石英晶体受力方向与电荷极性关系, 当晶片受到x方向的压力作用时,qx只与作用力Fx成正比,而与晶片的几何尺寸无关; 沿机械轴y方向向晶片施加压力时,产生的电荷是与几何尺寸有关的; 石英晶体不是在任何方向都存在压电效应的; 晶体在哪个方向
9、上有正压电效应,则在此方向上一定存在逆压电效应; 无论是正或逆压电效应,其作用力(或应变)与电荷(或电场强度)之间皆呈线性关系。,压电陶瓷是人工制造的多晶体压电材料。材料内部的晶粒有许多自发极化的电畴,它有一定的极化方向,从而存在电场。 在无外电场作用时,电畴在晶体中杂乱分布,它们各自的极化效应被相互抵消,压电陶瓷内极化强度为零。因此原始的压电陶瓷呈中性,不具有压电性质。,5.1.2 压电陶瓷,在陶瓷上施加外电场时,电畴的极化方向发生转动,趋向于按外电场方向的排列,从而使材料得到极化。外电场愈强,就有更多的电畴更完全地转向外电场方向。让外电场强度大到使材料的极化达到饱和的程度,即所有电畴极化方
10、向都整齐地与外电场方向一致时,当外电场去掉后,电畴的极化方向基本没变化,即剩余极化强度很大,这时的材料才具有压电特性。,图5-4 压电陶瓷的极化 (a) 未极化; (b) 电极化,陶瓷片内的极化强度总是以电偶极矩的形式表现出来,即在陶瓷的一端出现正束缚电荷,另一端出现负束缚电荷。由于束缚电荷的作用,在陶瓷片的电极面上吸附了一层来自外界的自由电荷。这些自由电荷与陶瓷片内的束缚电荷符号相反而数量相等,它屏蔽和抵消了陶瓷片内极化强度对外界的作用。,如果在陶瓷片上加一个与极化方向平行的压力F,陶瓷片将产生压缩形变。片内的正、负束缚电荷之间的距离变小,极化强度也变小。释放部分吸附在电极上的自由电荷,而出
11、现放电现象。当压力撤消后,陶瓷片恢复原状,极化强度也变大,因此电极上又吸附一部分自由电荷而出现充电现象。 正压电效应,若在片上加一个与极化方向相同的电场,电场的作用使极化强度增大。陶瓷片内的正、负束缚电荷之间距离也增大,即陶瓷片沿极化方向产生伸长形变。同理,如果外加电场的方向与极化方向相反,则陶瓷片沿极化方向产生缩短形变。这种由于电效应而转变为机械效应,或者由电能转变为机械能的现象,就是压电陶瓷的逆压电效应。,对于压电陶瓷,通常取它的极化方向为z轴,垂直于z轴的平面上任何直线都可作为x或y轴,在是和石英晶体的不同之处。当压电陶瓷在沿极化方向受力时,则在垂直于z轴的上、下两表面上将会出现电荷,其
12、电荷量Q与作用力Fz成正比,即,式中: d33 压电陶瓷的压电系数; F作用力。,压电陶瓷的压电系数比石英晶体的大得多,所以采用压电陶瓷制作的压电式传感器的灵敏度较高。极化处理后的压电陶瓷材料的剩余极化强度和特性与温度有关,它的参数也随时间变化,从而使其压电特性减弱。,最早使用的压电陶瓷材料是钛酸钡(BaTiO3)。它是由碳酸钡和二氧化钛按11摩尔分子比例混合后烧结而成的。它的压电系数约为石英的50倍, 但居里点温度只有115,使用温度不超过70,温度稳定性和机械强度都不如石英。,压电材料应具备以下几个主要特性:转换性能。要求具有较大的压电常数。机械性能。机械强度高、刚度大。电性能。高电阻率和
13、大介电常数。环境适应性。温度和湿度稳定性要好,要求具有较高的居里点,获得较宽的工作温度范围。时间稳定性。要求压电性能不随时间变化。,压电材料介绍,在几百摄氏度的温度范围内,其介电常数和压电系数几乎不随温度而变化。但是当温度升高到573时,石英晶体将完全丧去压电特性,这就是它的居里点。石英晶体的突出优点是性能非常稳定,它有很大的机械强度和稳定的机械性能。但石英材料价格昂贵,且压电系数比压电陶瓷低得多。因此一般仅用于标准仪器或要求较高的传感器中。,(1) 石英晶体,石英晶体有天然和人工培养两种类型。人工培养的石英晶体的物理和化学性质几乎与天然石英晶体没有区别,因此目前广泛应用成本较低的人造石英晶体
14、。因为石英是一种各向异性晶体,因此,按不同方向切割的晶片,其物理性质(如弹性、压电效应、温度特性等)相差很大。在设计石英传感器时,应根据不同使用要求正确地选择石英片的切型。,压电陶瓷主要有以下几种:1. 钛酸钡压电陶瓷钛酸钡(BaTiO3)是由碳酸钡(BaCO3)和二氧化钛(TiO2)按1:1分子比例在高温下合成的压电陶瓷。它具有很高的介电常数和较大的压电系数(约为石英晶体的50倍)。不足之处是居里点温度低(120),温度稳定性和机械强度不如石英晶体。,(2)压电陶瓷,2. 锆钛酸铅系压电陶瓷(PZT)锆钛酸铅是由PbTiO3 (钛酸铅 )和PbZrO3(锆酸铅 )组成的固溶体Pb(Zr、Ti
15、)O3。它与钛酸钡相比,压电系数更大,居里点温度在300以上,各项机电参数受温度影响小,时间稳定性好。此外,在锆钛酸中添加一种或两种其它微量元素(如铌、锑、锡、锰、钨等)还可以获得不同性能的PZT材料。因此锆钛酸铅系压电陶瓷是目前压电式传感器中应用最广泛的压电材料。,1. 压电半导体材料压电半导体材料有ZnO、CdS(硫化镉 ) 、CdTe(碲化镉 )等,这种力敏器件具有灵敏度高,响应时间短等优点。此外用ZnO作为表面声波振荡器的压电材料,可检测力和温度等参数。,(3)新型压电材料,2. 高分子压电材料某些合成高分子聚合物薄膜经延展拉伸和电场极化后,具有一定的压电性能,这类薄膜称为高分子压电薄
16、膜。目前出现的压电薄膜有聚二氟乙烯PVF2、聚氟乙烯PVF、聚氯乙烯PVC、聚甲基-L谷氨酸脂PMG等。高分子压电材料是一种柔软的压电材料,不易破碎,可以大量生产和制成较大的面积。,压电晶片的连接方式,在实际应用中,由于单片的输出电荷很小,因此,组成压电式传感器的晶片不止一片,常常将两片或两片以上的晶片粘结在一起。粘结的方法有两种,即并联和串联。,并联方法两片压电晶片的负电荷集中在中间电极上,正电荷集中在两侧的电极上,传感器的电容量大、输出电荷量大、时间常数也大,故这种传感器适用于测量缓变信号及电荷量输出信号。,串联方法正电荷集中于上极板,负电荷集中于下极板,传感器本身的电容量小、响应快、输出
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 压电 传感器 汇总 ppt 课件
链接地址:https://www.31ppt.com/p-1319805.html