《分配问题与匈牙利法ppt课件.ppt》由会员分享,可在线阅读,更多相关《分配问题与匈牙利法ppt课件.ppt(31页珍藏版)》请在三一办公上搜索。
1、分配问题与匈牙利法,指派问题的数学模型的标准形式:,设n 个人被分配去做n 件工作,规定每个人只做一件工作,每件工作只有一个人去做。已知第i个人去做第j 件工作的效率( 时间或费用)为Cij(i=1.2n;j=1.2n)并假设Cij 0。问应如何分配才能使总效率( 时间或费用)最高?,设决策变量,分配问题与匈牙利法,指派问题的数学模型为:,分配问题与匈牙利法,克尼格定理 :如果从分配问题效率矩阵aij的每一行元素中分别减去(或加上)一个常数ui,从每一列中分别减去(或加上)一个常数vj,得到一个新的效率矩阵bij,则以bij为效率矩阵的分配问题与以aij为效率矩阵的分配问题具有相同的最优解。,
2、分配问题与匈牙利法,指派问题的求解步骤:,1) 变换指派问题的系数矩阵(cij)为(bij),使在(bij)的各行各列中都出现0元素,即 从(cij)的每行元素都减去该行的最小元素; 再从所得新系数矩阵的每列元素中减去该列的最小元素。,2) 进行试指派,以寻求最优解。 在(bij)中找尽可能多的独立0元素,若能找出n个独立0元素,就以这n个独立0元素对应解矩阵(xij)中的元素为1,其余为0,这就得到最优解。,分配问题与匈牙利法,找独立0元素,常用的步骤为:,从只有一个0元素的行开始,给该行中的0元素加圈,记作 。然后划去 所在列的其它0元素,记作 ;这表示该列所代表的任务已指派完,不必再考虑
3、别人了。依次进行到最后一行。 从只有一个0元素的列开始(画的不计在内),给该列中的0元素加圈,记作;然后划去 所在行的0元素,记作 ,表示此人已有任务,不再为其指派其他任务了。依次进行到最后一列。 若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,比较这行各0元素所在列中0元素的数目,选择0元素少这个0元素加圈(表示选择性多的要“礼让”选择性少的)。然后划掉同行同列的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为止。,分配问题与匈牙利法,若 元素的数目m 等于矩阵的阶数n(即:mn),那么这指派问题的最优解已得到。若m n, 则转入下一步。,3) 用最少的直线通过所有0元素。其方
4、法:,对没有的行打“”; 对已打“” 的行中所有含元素的列打“” ; 再对打有“”的列中含 元素的行打“” ; 重复、直到得不出新的打号的行、列为止; 对没有打号的行画横线,有打号的列画纵线,这就得到覆盖所有0元素的最少直线数 l 。,注:l 应等于m,若不相等,说明试指派过程有误,回到第2步,另行试指派;若 lm n,表示还不能确定最优指派方案,须再变换当前的系数矩阵,以找到n个独立的0元素,为此转第4步。,分配问题与匈牙利法,4) 变换矩阵(bij)以增加0元素在没有被直线通过的所有元素中找出最小值,没有被直线通过的所有元素减去这个最小元素;直线交点处的元素加上这个最小值。新系数矩阵的最优
5、解和原问题仍相同。转回第2步。,分配问题与匈牙利法,例4.6 有一份中文说明书,需译成英、日、德、俄四种文字,分别记作A、B、C、D。现有甲、乙、丙、丁四人,他们将中文说明书译成不同语种的说明书所需时间如下表所示,问如何分派任务,可使总时间最少?,分配问题与匈牙利法,解:1)变换系数矩阵,增加0元素。,5,2)试指派(找独立0元素),找到 3 个独立零元素 但 m = 3 n = 4,分配问题与匈牙利法,3)作最少的直线覆盖所有0元素,独立零元素的个数m等于最少直线数l,即lm=3n=4;,4)没有被直线通过的元素中选择最小值为1,变换系数矩阵,将没有被直线通过的所有元素减去这个最小元素;直线
6、交点处的元素加上这个最小值。得到新的矩阵,重复2)步进行试指派,分配问题与匈牙利法,试指派,得到4个独立零元素, 所以最优解矩阵为:,即完成4个任务的总时间最少为:241+8=15,分配问题与匈牙利法,例4.7 已知四人分别完成四项工作所需时间如下表,求最优分配方案。,分配问题与匈牙利法,解:1)变换系数矩阵,增加0元素。,2)试指派(找独立0元素),独立0元素的个数为4 , 指派问题的最优指派方案即为甲负责D工作,乙负责B工作,丙负责A工作,丁负责C工作。这样安排能使总的工作时间最少,为4491128。,分配问题与匈牙利法,例4.8 已知五人分别完成五项工作耗费如下表,求最优分配方案。,分配
7、问题与匈牙利法,-1,-2,解:1)变换系数矩阵,增加0元素。,分配问题与匈牙利法,2)试指派(找独立0元素),独立0元素的个数l45,故画直线调整矩阵。,分配问题与匈牙利法,选择直线外的最小元素为1;直线外元素减1,直线交点元素加1,其他保持不变。,分配问题与匈牙利法,l =m=4 n=5,选择直线外最小元素为1,直线外元素减1,直线交点元素加1,其他保持不变,得到新的系数矩阵。,分配问题与匈牙利法,总费用为=5+7+6+6+4=28,注:此问题有多个最优解,分配问题与匈牙利法,总费用为=7+9+4+3+5=28,分配问题与匈牙利法,总费用为=8+9+4+3+4=28,分配问题与匈牙利法,课
8、堂练习:用匈牙利法求解下列指派问题。,练习1:,练习2:,分配问题与匈牙利法,48,21,答案:,分配问题与匈牙利法,非标准型的指派问题:,匈牙利法的条件是:模型求最小值、效率cij0。当遇到各种非标准形式的指派问题时,处理方法是先将其转化为标准形式,然后用匈牙利法来求解。,分配问题与匈牙利法,1. 最大化指派问题,处理方法:设m为最大化指派问题系数矩阵C中最大元素。令矩阵B(m-cij)nn则以B为系数矩阵的最小化指派问题和原问题有相同的最优解。,例4.9 某人事部门拟招聘4人任职4项工作,对他们综合考评的 得分如下表(满分100分),如何安排工作使总分最多。,分配问题与匈牙利法,解: M9
9、5,令,用匈牙利法求解C,最优解为:,即甲安排做第二项工作、乙做第三项、丙做第四项、丁做第三项, 最高总分Z92959080357,分配问题与匈牙利法,2. 不平衡的指派问题,当人数m大于工作数n时,加上mn项虚拟工作,例如:,当人数m小于工作数n时,加上nm个人,例如,分配问题与匈牙利法,3. 一个人可做几件事的指派问题,若某人可做几件事,则将该人化作相同的几个“人”来接受指派,且费用系数取值相同。,例如:丙可以同时任职A和C工作,求最优指派方案。,分配问题与匈牙利法,4. 某事一定不能由某人做的指派问题,将该人做此事的效率系数取做足够大的数,可用M表示。,例4.10 分配甲、乙、丙、丁四个人去完成A、B、C、D、E五项任务。每个人完成各项任务的时间如表所示。由于任务数多于人数,考虑任务E必须完成,其他4项中可任选3项完成。试确定最优分配方案,使完成任务的总时间最少。,分配问题与匈牙利法,解: 1) 这是不平衡的指派问题,首先转换为标准型,再用匈牙利法求解。2) 由于任务数多于人数,所以假定一名虚拟人,设为戊。因为工作E必须完成,故设戊完成E的时间为M(M为非常大的数),其余效率系数为0,则标准型的效率矩阵表示为:,分配问题与匈牙利法,用匈牙利法求出最优指派方案为:,即甲B,乙D,丙E,丁A, 任务C放弃。最少时间为105。,
链接地址:https://www.31ppt.com/p-1316507.html