《测量平差基础》课件-.ppt
《《测量平差基础》课件-.ppt》由会员分享,可在线阅读,更多相关《《测量平差基础》课件-.ppt(204页珍藏版)》请在三一办公上搜索。
1、误差理论与测量平差,Surveying Adjustment,1,精选课件ppt,误差理论与测量平差Surveying Adjustmen,误差理论与 测量平差,第六章 附有参数的条件平差,第二章 精度指标与误差传播,第三章 平差最小二乘模型与最小二乘原理,第四章 条件平差,第五章 间接平差,第一章 绪论,第七章 附有限制条件的间接平差,第八章 概括平差函数模型,退出,第九章 误差椭圆,2,精选课件ppt,误差理论与第六章 附有参数的条件,测绘工程专业主干课:,专业基础主要课程:测量学(5)、测量平差基础(5)、控制测量学(5)、摄影测量学(4)、测绘数据计算机处理(3),专业课:GPS(4)
2、、GIS(3)、工程测量(4)、数字制图(3)、近代平差(2)等,3,精选课件ppt,测绘工程专业主干课:专业基础主要课程:专业课:3精选课件pp,测绘科学与技术,大地测量与测量工程 摄影测量与遥感 地图制图与地理信息系统工程,数学政治英语测量平差,4,精选课件ppt,测绘科学与技术数学4精选课件ppt,课程安排,前修课程:高数、几何与代数、概率与数理统计课程分两个学期进行: 第二学年上学期:3学分 第三学年下学期:2学分后续课程:测绘数据的计算机处理、控制测量、近代平差,5,精选课件ppt,课程安排前修课程:高数、几何与代数、概率与数理统计5精选课件,教学方式与内容,讲授为主,例题、习题相结
3、合。内容:本学期主要讲前五章的内容。参考书目: 测量平差原理,於宗俦等,测绘出版社 误差理论与测量数据处理,测量平差教研室,测绘出版社。,6,精选课件ppt,教学方式与内容讲授为主,例题、习题相结合。6精选课件ppt,第一章 绪论,停止,返回,7,精选课件ppt,第一章 绪论第一节 观测误差第二节 补充知识停止返回7,第一章 绪论,第一节:概述 1、测量平差的研究对象误差 任何量测不可避免地含有误差,闭合、附合水准路线闭合、附合导线距离测量角度测量.,停止,返回,8,精选课件ppt,第一章 绪论第一节:概述闭合、附合水准路线停止返回8精选课,误差:测量值与真值之差,由于误差的存在,使测量数据之
4、间产生矛盾,测量平差的任务就是消除这种矛盾,或者说是将误差分配掉,因此称为平差。,停止,返回,9,精选课件ppt,误差:测量值与真值之差由于误差的存在,使测量数据之间产生矛盾,产生误差的原因,测量仪器:i角误差、2c误差观测者:人的分辨力限制外界条件:温度、气压、大气折光等,三者综合起来为观测条件,停止,返回,10,精选课件ppt,产生误差的原因测量仪器:i角误差、2c误差三者综合起来为观测,误差的分类,系统误差:在相同的观测条件下进行的一系列观测,如果误差在大小、符号上表现出系统性,或者按一定的规律变化,这种误差称为系统误差。,停止,返回,系统误差的存在必然影响观测结果。,削弱方法:采用一定
5、的观测程序、改正、附加参数,11,精选课件ppt,误差的分类系统误差:在相同的观测条件下进行的一系列观测,如果,误差的分类,偶然误差/随机误差:在相同的观测条件下进行的一系列观测,如果误差在大小、符号上都表现出偶然性,从单个误差上看没有任何规律,但从大量误差上看有一定的统计规律,这种误差称为偶然误差。 不可避免,测量平差研究的内容粗差:错误,停止,返回,12,精选课件ppt,误差的分类偶然误差/随机误差:在相同的观测条件下进行的一系列,停止,返回,测量平差的任务:,对一系列带有观测误差的观测值,运用概率统计的方法来消除它们之间的不符值,求未知量的最可靠值。,评定测量成果的质量,13,精选课件p
6、pt,停止返回测量平差的任务:对一系列带有观测误差的观测值,运用,停止,返回,测量平差产生的历史,最小二乘法产生的背景,18世纪末,如何从多于未知参数的观测值集合求出未知数的最佳估值?,最小二乘的产生,1794年,C.F.GUASS,从概率统计角度,提出了最小二乘1806年,A.M. Legendre,从代数角度,提出了最小二乘。决定彗星轨道的新方法1809年, C.F.GUASS,天体运动的理论,14,精选课件ppt,停止返回测量平差产生的历史最小二乘法产生的背景18世纪末,,停止,返回,测量平差产生的历史,最小二乘法原理的两次证明,形成测量平差的最基本模型,1912年,A.A.Markov
7、, 对最小二乘原理进行证明,形成数学模型:,最小二乘解:,测量平差理论的扩展,15,精选课件ppt,停止返回测量平差产生的历史最小二乘法原理的两次证明形成测,补充知识,一、矩阵的定义及其某些特殊矩阵,(1)由,个数有次序地排列成m行n列的表叫矩阵,通常用一个大写字母表示,如:,停止,返回,16,精选课件ppt,补充知识一、矩阵的定义及其某些特殊矩阵(1)由个数有次序地排,(2)若m=n,即行数与列数相同,称A为方阵。元素a11、a22ann 称为对角元素。,(3)若一个矩阵的元素全为0,称零矩阵,一般用O表示。,(4)对于 的方阵,除对角元素外,其它元素全为零,称为对角矩阵。如:,(5)对于
8、对角阵,若a11=a22=ann =1,称为单位阵,一般用E、I表示。,停止,返回,17,精选课件ppt,(2)若m=n,即行数与列数相同,称A为方阵。元素a11、a,(6)若aij=aji,则称A为对称矩阵。,停止,返回,18,精选课件ppt,(6)若aij=aji,则称A为对称矩阵。停止返回18精选课,矩阵的基本运算:,(1)若具有相同行列数的两矩阵各对应元素相同,则:,(2)具有相同行列数的两矩阵A、B相加减,其行列数与A、B相同,其元素等于A、B对应元素之和、差。且具有可交换性与可结合性。,(3)设A为m*s的矩阵,B为s*n的矩阵,则A、B相乘才有意义,C=AB,C的阶数为m*n。O
9、A=AO=O,IA=AI=A,A(B+C)=AB+AC,ABC=A(BC),停止,返回,19,精选课件ppt,矩阵的基本运算:(1)若具有相同行列数的两矩阵各对应元素相同,二、矩阵的转置,对于任意矩阵Cmn:,将其行列互换,得到一个nm阶矩阵,称为C的转置。用:,停止,返回,20,精选课件ppt,二、矩阵的转置对于任意矩阵Cmn:将其行列互换,得到一个nm,矩阵转置的性质:,(6)若,则A为对称矩阵。,停止,返回,21,精选课件ppt,矩阵转置的性质:(6)若则A为对称矩阵。停止返回21精选课件,三、矩阵的逆,给定一个n阶方阵A,若存在一个同阶方阵B,使AB=BA=I(E),称B为A的逆矩阵。
10、记为:,A矩阵存在逆矩阵的充分必要条件是A的行列式不等于0,称A为非奇异矩阵,否则为奇异矩阵,停止,返回,22,精选课件ppt,三、矩阵的逆给定一个n阶方阵A,若存在一个同阶方阵B,使A,矩阵的逆的性质,停止,返回,23,精选课件ppt,矩阵的逆的性质停止返回23精选课件ppt,矩阵求逆方法:,(1)伴随矩阵法: 设Aij为A的第i行j列元素aij的代数余子式,则由n*n个代数余子式构成的矩阵为A的伴随矩阵的转置矩阵A*称为A的伴随矩阵。,停止,返回,24,精选课件ppt,矩阵求逆方法:(1)伴随矩阵法:停止返回24精选课件ppt,矩阵求逆方法,则:,(2)初等变换法:,经初等变换:,停止,返
11、回,25,精选课件ppt,矩阵求逆方法则:(2)初等变换法:经初等变换:停止返回25精,概率与数理统计内容,随机变量误差分布曲线概率密度曲线数学期望方差,停止,返回,26,精选课件ppt,概率与数理统计内容随机变量停止返回26精选课件ppt,第一节 概述,第二节 偶然误差的规律性,第三节 衡量精度的指标,第四节 协方差传播律,停止,返回,第五节 协方差传播律在测量上的应用,第六节 协方差传播律,第七节 权与定权的常用方法,第八节 协因数与协因数传播律,27,精选课件ppt,第一节 概述第二节 偶然误差的规律性第三节 衡量精度的指,第二节 偶然误差的规律性,观测值:对该量观测所得的值,一般用Li
12、表示 。,真值:观测量客观上存在的一个能代表其真正大小的数值,一般用 表示。,一、几个概念,真误差:观测值与真值之差, 一般用i= -Li 表示。,第一节 概述,停止,返回,28,精选课件ppt,第二节 偶然误差的规律性观测值:对该量观测所得的值,一般,观测向量:若进行n次观测,观测值:L1、L2Ln可表示为:,停止,返回,29,精选课件ppt,观测向量:若进行n次观测,观测值:L1、L2Ln可表示为,二、偶然误差的特性,例1:在相同的条件下独立观测了358个三角形的全部内角,每个三角形内角之和应等于180度,但由于误差的影响往往不等于180度,计算各内角和的真误差,并按误差区间的间隔0.2秒
13、进行统计。,停止,返回,30,精选课件ppt,二、偶然误差的特性例1:在相同的条件下独立观测了358个三,例2:在相同的条件下独立观测了421个三角形的全部内角,每个三角形内角之和应等于180度,但由于误差的影响往往不等于180度,计算各内角和的真误差,并按误差区间的间隔0.2秒进行统计。,停止,返回,31,精选课件ppt,例2:在相同的条件下独立观测了421个三角形的全部内角,每个,(K/n)/d,概率密度函数曲线,用直方图表示:,停止,返回,面积= (K/n)/d* d= K/n,所有面积之和=k1/n+k2/n+.=1,32,精选课件ppt,(K/n)/d00.40.60.8-0.8-0
14、.6-0.4,0.475,停止,返回,提示:观测值定了其分布也就确定了,因此一组观测值对应相同的分布。不同的观测序列,分布不同。但其极限分布均是正态分布。,33,精选课件ppt,频数/d00.40.60.8-0.8-,1、在一定条件下的有限观测值中,其误差的绝对值不会超过一定的界限;,2、绝对值较小的误差比绝对值较大的误差出现的次数多;,3、绝对值相等的正负误差出现的次数大致相等;,偶然误差的特性:,停止,返回,34,精选课件ppt,1、在一定条件下的有限观测值中,其误差的绝对值不会超过一定的,第三节 衡量精度的指标,精度:所谓精度是指偶然误差分布的密集离散程度。,一组观测值对应一种分布,也就
15、代表这组观测值精度相同。不同组观测值,分布不同,精度也就不同。,提示:一组观测值具有相同的分布,但偶然误差各不相同。,35,精选课件ppt,第三节 衡量精度的指标精度:所谓精度是指偶然误差分布的密集,停止,返回,可见:左图误差分布曲线较高 且陡峭,精度高 右图误差分布曲线较低 且平缓,精度低,36,精选课件ppt,频数/d00.40.60.8-0.8-,一、方差/中误差,第三节 衡量精度的指标,停止,返回,方差:,中误差:,提示: 越小,误差曲线越陡峭,误差分布越密集,精度越高。相反,精度越低。,37,精选课件ppt,一、方差/中误差 f()00.40.60,方差的估值:,38,精选课件ppt
16、,方差的估值:38精选课件ppt,二、平均误差,停止,返回,在一定的观测条件下,一组独立的偶然误差绝对值的数学期望。,与中误差的关系:,39,精选课件ppt,二、平均误差停止返回在一定的观测条件下,一组独立的偶然误差绝,三、或然误差,停止,返回,40,精选课件ppt,三、或然误差 f()0闭合差50%停止返,四、极限误差,四、相对误差,中误差与观测值之比,一般用1/M表示。,41,精选课件ppt,四、极限误差四、相对误差中误差与观测值之比,一般用1/M表示,第四节 协方差传播律,一、协方差,对于变量X,Y,其协方差为:,停止,返回,42,精选课件ppt,第四节 协方差传播律一、协方差对于变量X
17、,Y,其协方差为,表示X、Y间互不相关,对于正态分布而言,相互独立。,表示X、Y间相关,43,精选课件ppt,表示X、Y间互不相关,对于正态分布而言,相互独立。表示X、Y,对于向量X=X1,X2,XnT,将其元素间的方差、协方差阵表示为:,停止,返回,矩阵表示为:,方差协方差阵,44,精选课件ppt,对于向量X=X1,X2,XnT,将其元素间的方差、协,特点:I 对称 II 正定 III 各观测量互不相关时,为对角矩阵。当 对角元 相等时,为等精度观测。,45,精选课件ppt,特点:I 对称45精选课件ppt,若:,若DXY=0,则X、Y表示为相互独立的观测量。,46,精选课件ppt,若:若D
18、XY=0,则X、Y表示为相互独立的观测量。46精选课,二、观测值线性函数的方差,已知:,那么:,停止,返回,证明:设:,那么:,47,精选课件ppt,二、观测值线性函数的方差已知:那么:停止返回证明:设:那么:,停止,返回,48,精选课件ppt,停止返回48精选课件ppt,例1: 设 ,已知 , 求 的方差 。,例2:若要在两已知点间布设一条附和水准路线,已知每公里观测中误差等于5.0mm,欲使平差后线路中点高程中误差不大于10mm,问该路线长度最多可达几公里?,停止,返回,49,精选课件ppt,例1: 设,二、多个观测值线性函数的协方差阵,已知:,停止,返回,50,精选课件ppt,二、多个观
19、测值线性函数的协方差阵已知:停止返回50精选课件p,停止,返回,例3:在一个三角形中,同精度独立观测得到三个内角L1、L2、L3,其中误差为,将闭合差平均分配后各角的协方差阵。,51,精选课件ppt,停止返回例3:在一个三角形中,同精度独立观测得到三个内角L1,四 、非线性函数的情况,设有观测值X的非线性函数:,已知:,52,精选课件ppt,四 、非线性函数的情况设有观测值X的非线性函数:已知:52精,停止,返回,将Z按台劳级数在X0处展开:,53,精选课件ppt,停止返回将Z按台劳级数在X0处展开:53精选课件ppt,54,精选课件ppt,54精选课件ppt,例4、根据极坐标法测设P点的坐标
20、,设已知点无误差,测角中误差为m,边长中误差ms,试推导P点的点位中误差。,停止,返回,55,精选课件ppt,例4、根据极坐标法测设P点的坐标,设已知点无误差,测角中误差,协方差传播应用步骤:,根据实际情况确定观测值与函数,写出具体表达式写出观测量的协方差阵对函数进行线性化协方差传播,停止,返回,56,精选课件ppt,协方差传播应用步骤:根据实际情况确定观测值与函数,写出具体表,协方差传播在测量中的应用,一、水准测量的精度,停止,返回,57,精选课件ppt,a1b1a2b2abaNbN1(s)2(s)N(s)ABT,作业1、在高级水准点A、(高程为真值)间布设水准路 线,如下图,路线长分别为
21、,设每公里观测高差的中误差为 ,试求: (1)将闭合差按距离分配之后的p1、p2点间高差的中误差;(2)分配闭合差后P1点的高程中误差。,作业2、在相同条件下,观测两个角度A=150000,B=750000,设对A观测4个测回的测角精度(中误差)为3,问观测9个测回的精度为多少?,停止,返回,58,精选课件ppt,作业1、在高级水准点A、(高程为真值)间布设水准路 线,,第七节 权与定权的常用方法,一、权的定义,称为观测值Li的权。权与方差成反比。,59,精选课件ppt,第七节 权与定权的常用方法一、权的定义称为观测值Li的权。,(三)权是衡量精度的相对指标,为了使权起到比较精度的作用,一个问
22、题只选一个0。,(四)只要事先给定一定的条件,就可以定权。,60,精选课件ppt,(三)权是衡量精度的相对指标,为了使权起到比较精度的作用,一,二、单位权中误差,三、常用的定权方法,1、水准测量的权,或,61,精选课件ppt,二、单位权中误差三、常用的定权方法1、水准测量的权或61精选,2、边角定权,停止,返回,62,精选课件ppt,2、边角定权停止返回62精选课件ppt,第八节 协因数与协因数传播律,一、协因数与协因数阵,63,精选课件ppt,第八节 协因数与协因数传播律一、协因数与协因数阵63精选课,不难得出:,QXX为协因数阵,64,精选课件ppt,不难得出:QXX为协因数阵64精选课件
23、ppt,特点:I 对称,对角元素为权倒数 II 正定 III 各观测量互不相关时,为对角矩阵。当 为等精度观测,单位阵。,65,精选课件ppt,特点:I 对称,对角元素为权倒数65精选课件ppt,二、权阵,66,精选课件ppt,二、权阵66精选课件ppt,第一节 测量平差概述,第二节 测量平差的数学模型,第三节 参数估计与最小二乘原理,停止,返回,67,精选课件ppt,第一节 测量平差概述第二节 测量平差的数学模型第三节 参数估,一、必要观测、多余观测,确定平面三角形的形状,观测三个内角的任意两个即可,称其必要元素个数为2,必要元素有 种选择,第一节 测量平差概述,确定平面三角形的形状与大小,
24、6个元素中必须有选择地观测三个内角与三条边的三个元素,因此,其必要元素个数为3。任意2个角度+1个边、2个边+1个角度、三个边。,停止,返回,68,精选课件ppt,一、必要观测、多余观测确定平面三角形的形状观测三个内角的任,必须有选择地观测6个高差中的3个,其必要元素个数为3。h1、h5、h6或h1、h2、h3或h1、h2、h4等,确定如图四点的相对高度关系,必要观测: 能够唯一确定一个几何模型所必要的观测 一般用t表示。,停止,返回,特点: 给定几何模型,必要观测及类型即定,与观测无关。 必要观测之间没有任何函数关系,即相互独立。 确定几何模型最大独立观测个数,69,精选课件ppt,必须有选
25、择地观测6个高差中的3个,其必要元素个数为3。h1、,多余观测: 观测值的个数n与必要观测个数t之差 一般用r表示,r=n-t。,确定几何模型最大独立观测个数为t, 那么再多进行一个观测就相关了,即形成函数关系,也称为观测多余了。,观测值: 为了确定几何模型中各元素的大小进行的实际 观测,称为观测值,观测值的个数一般用n表示。,nt,,可以确定模型,还可以发现粗差。,70,精选课件ppt,多余观测: 观测值的个数n与必要观测个数t之差确定几何模型最,二、测量平差,必要观测可以唯一确定模型,其相互独立。可见若有多余观测必然可用这t个元素表示,即形成r个条件。,停止,返回,实际上:,71,精选课件
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量平差基础 测量 基础 课件
链接地址:https://www.31ppt.com/p-1293097.html