hecheng物质结构基础good课件.ppt
《hecheng物质结构基础good课件.ppt》由会员分享,可在线阅读,更多相关《hecheng物质结构基础good课件.ppt(179页珍藏版)》请在三一办公上搜索。
1、第二章 物质结构(一)原子结构,第二章 物质结构(一,物质世界五光十色、千变万化,归根结底由物质的组成、结构决定,物质世界五光十色、千变万化,研究物质世界,就是研究物质的组成、结构、性质及其变化规律。,万事皆有缘 宏观物质的性质、变化规律缘由于微观物质。化学研究什么?,研究物质世界,就是研究物质的组成、结构、性质及其变化,物理 化学 物理. 化学主要是研究化合物的组成、结构、性质 数学、物理、化学是一切自然科学的基础科学,或称为中心科学。,宏观物质,亚微观结构,分子,原子,基本粒子,宏观物质亚微观结构分子原子基本粒子,化学研究物质的总体思路,化合物的性质,化合物存在 的状态,化学反应的 历程,
2、能量最低原理,电子效应,空间效应,化学研究物质的总体思路化合物的性质化合物存在化学反应的,.,1.1 原子结构的近代概念1.2 原子核外电子的排布和元素周期律1.3 化学键和分子构型1.4 共价分子的空间构型1.5 分子间力和氢键1.6 晶体结构,.1.1 原子结构的近代概念,1.1 原子结构的近代概念,1.1.1、 经典原子模型1.1.2、 原子结构的近代概念1.1.3 原子轨道和电子云1.1.4 多电子原子中轨道的能级,1.1 原子结构的近代概念1.1.1、 经典原子模型,1.1.1、 经典原子模型,1J. Dalton原子模型原子是物质的不可再分的最小实心微粒。,1.1.1、 经典原子模
3、型1J. Dalton原子模型,阴极射线,19世纪末,X射线、电子射线被发现,结果表明原子是可以分割的,不是最后质点。,阴极射线 19世纪末,X射线、电子射线被发现,结果表明原子,2J.J.Thomson的“浸入式”原子模型,认为原子是由带正电的均匀连续体和在其中运动的负电子构成。,2J.J.Thomson的“浸入式”原子模型认为原子是,3E.Ruthorford的“含核”原子模型,认为原子中心有一个小而重的带正电荷的原子核,核外有电子绕核的外围作空间运动。,3E.Ruthorford的“含核”原子模型认为原子中,4Bohr原子模型,指出微观粒子运动具有量子化的特征,提出了关于原子轨道能级的概
4、念。,4Bohr原子模型 指出微观粒子运动具有量子化的特,hecheng物质结构基础good课件,1.1.2、原子结构的近代概念,1波粒二相性2运动的统计性,1.1.2、原子结构的近代概念1波粒二相性,1 波粒二象性,对于光的本性,曾经有微粒说、波动说的长期增论,后来确认既具有微粒性,又具有波动性,称为波粒二象性。物质波的概念 1924年de Broglie在光的启发下提出一切物质都具有粒子和波动的性质,即波粒二象性,1 波粒二象性 对于光的本性,曾经有微粒说、波动,把作为粒子特征的动量P和表现波特性的波长联系起来。,E为粒子的能量; 为粒子物质波的波长; P为粒子的动量; 为粒子物质波的频率
5、; h为普朗克常数; v为粒子物质波的运动速度。,P =,E,V,=,h ,V,=,h,或,h,p,把作为粒子特征的动量P和表现波特性的波长联系,例:,重 25g的子弹,飞行速度为 9.0102m.s1,其 = 2.941035m重 9.11028 g的电子,运动速度为 3106ms1,其 = 2.41010m可见,对于宏观物质,其波动性微乎甚微,可以忽略,但对于微观微粒,其波动性相对较大,成为重要性能。,例:重 25g的子弹,飞行速度为 9.0102m.s,可见,对于较重的宏观物体,其物质波极短,不能察觉,波动性可以忽略,但对于电子、质子、中子、原子、分子等微观粒子,就必须考虑其波动性,就是
6、说,微观粒子都具有波粒二象性。,可见,对于较重的宏观物体,其物质波,1927年,Davisson(戴维逊)、Germer(盖末)通过电子衍射证实了de Broglie(德布罗伊)的假设,即电子和光子一样具有波粒二象性。,.X射线衍射图 电子射线衍射图,1927年,Davisson(戴维逊)、Germer(,2、微观粒子运动的统计性,微观粒子具有波粒二象性,就不能象宏观物体那样在确定的时间断内准确的描述出其运动的轨迹。 微观粒子的运动符合下列关系:X 为微观粒子在某一方向的位置(或坐标)测不准量;Px 为动量在x方向的分量测不准量; h 为Planck常数。,2、微观粒子运动的统计性 微观粒子具
7、有波,也就是说,微观粒子运动的距离变化与动量变化不能同时测准,这就是有名的海森堡测不准原理。,测不准原理是微观粒子的固有属性,不能用牛顿力学描述。我们只能用统计的方法,描述大量微观粒子运动的行为,即在一定区域内出现的概率,因而电子运动的轨道失去了其真正的含义。,也就是说,微观粒子运动的距离变化与动量变化不能同时,1.1.3 原子轨道和电子云,1、波函数和原子轨道2、四个量子数3、波函数与电子云,1.1.3 原子轨道和电子云1、波函数和原子轨道,1、波函数和原子轨道,1926年,Schrdinger(薛定谔)根据德布罗伊物质波的观点将电子的粒子性代入波动方程。 是描述波动的函数,称为波函数,可用
8、来表示任何微观粒子的行为。,1、波函数和原子轨道 1926年,Schrd,波函数是三维空间x、y、z的函数,其二阶偏微分方程就是有名的薛定谔方程,电子的波函数对原子核外电子运动的描述具有十分重要意义: 波函数不同,其能量不同。 每一个波函数,都表示核外电子运动的一种状态,称为原子轨道。,波函数是三维空间x、y、z的函数,其二阶偏微分方程,2、四个量子数,电子的波函数,通过求解薛定谔方程得到,在求解过程中,需要三个常数(n、l、m)进行限制才有物理意义。这三个常数称为量子数,每一组常数表示一个原子轨道。 (1) 主量子数 n(2)角量子数 l(3)磁量子数 m(4)自旋量子数 ms,2、四个量子
9、数 电子的波函数,通过求解薛定谔,主量子数 n主量子数 n 表示电子层,其值越大,轨道距核越远,能量越高。,电子层符号 K L M N O P Q ,主量子数 n 1 2 3 4 5 6 7 ,主量子数 n主量子数 n 表示电子层,其值越大,轨,(2)角量子数 l,角量子数 l 又叫副量子数,表示电子亚层。它确定着轨道的能级和形状。 角量子数 l 的值为:0 n1如:主量子数 1 2 3 4 角量子数 0 1 2 3 轨道符号 s p d f 轨道形状 球形 双球形 花瓣形 同样,l 的值越大,轨道距核越远,能量越高,(2)角量子数 l 角量子数 l 又叫副量子数,,(3)磁量子数 m,磁量子
10、数 m 确定着轨道的数目和空间取向m的取值为: m0,1,2.l=2l+1 一个m代表一个轨道如:角量子数 0 1 2 3 轨道符号 s p d f 轨道数目 1 3 5 7 m 不影响轨道能级,l相同时,2l+1个m的能级相同,称为简并轨道,或等价轨道。,(3)磁量子数 m磁量子数 m 确定着轨道的数目和空间,s、p、d电子云的角度分布图,s、p、d电子云的角度分布图,(4)自旋量子数 ms,自旋量子数 ms并不是求解薛定谔方程得出的,它是人们研究氢光谱的精细结构时,证实了每个轨道上存在着自旋相反的两个电子,为了表达这两个电子的区别,引出的第四个量子数。它只有1/2、1/2两个取值。表示为、
11、。原子核外电子的状态由这四个量子数确定,(4)自旋量子数 ms,hecheng物质结构基础good课件,S 轨道电子云,P 轨道电子云,3、波函数与电子云,波函数是核外电子运动的数学式,并无明确的物理意义。 但 2 的物理意义是电子在某区域出现的几率密度,如下图,叫电子云。,S 轨道电子云P 轨道电子云 3、波函数,原子轨道不是电子云,而是波函数,它是纯数学概念,具有相位,通常用“、”加以标识。,.,原子轨道不是电子云,而是波函数,它是纯数学概念,具,电子云的角度分布图与原子轨道角度分布图有两点不同:,a).原子轨道角度分布图带有正、 负号, 而电子云角度分布图均为正值;b).电子云角度分布图
12、比原子轨道角度分布 图“瘦”些,这是因为值一般是小于1 的,所以2值就更小些。,电子云的角度分布图与原子轨道角度分布图有两点不同:,通常为了方便,将原子轨道(即波函数)与电子云不加区别。,但它们的含义、形状各不相同。,通常为了方便,将原子轨道(即波,1.1.4 多电子原子中轨道的能级,能级排列屏蔽效应钻穿效应能级交错,1.1.4 多电子原子中轨道的能级能级排列,原子轨道能量的高低叫能级,能级主要由主量子数n决定,其次由副量子数l决定。,(1)角量子数相同时,主量子数越大,轨道能级越高。 E1s3时,可能发生能级交错。通过光谱试验总结出的近似能级图如下:,原子轨道能量的高低叫能级,能级主要由主量
13、子数,近似能级图,3,近似能级图3,徐光宪院士于1956年提出了经验公式,能基本上反映鲍林能级图。,n + 0.7 l 产生能级交错的主要原因是: 内层电子对外层电子产生的屏蔽效应 轨道形状不同而产生的贯(钻)穿效应,徐光宪院士于1956年提出了经验公式,能,1.2 原子核外电子的排布和元素周期律,1.2.1 核外电子排布的规则 Pauli(泡利)不相容原理 能量最低原理 Hund(洪特)规则1.2.2 核外电子构型与元素周期律1.2.3 原子结构与元素周期表的关系1.2.4 元素性质变化的周期性,1.2 原子核外电子的排布和元素周期律1.2.1 核外电子,1.2.2 核外电子构型与元素周期律
14、,周期表从氢元素开始,迄后的各元素随着原子核电荷(即原子序数)的增加,依次增加一个电子到核外电子层,并遵从上述三原则,随着元素原子序数的增加,其原子中的电子在轨道中按照能量由低到高的顺序填充。,1.2.2 核外电子构型与元素周期律周期表从氢元素开始,,如基态的钛原子(n=22)a.能级顺序 1s22s22p6 3s23p6 4s23d2b.电子层顺序 1s22s22p63s23p63d24s2c.轨道图1s 2s 2p 3s 3p 3d 4s,如基态的钛原子(n=22),电子处于全充满或半充满时,是比较稳定的,因此,在不违背最低能量原理时,电子将尽可能选择下面两种排布:全充满 P6或d10,f
15、 14半充满 P3或d5,f 7如:铬(Cr) Ar3d 54s1 而不是 Ar3d 44s2 铜(Cu) 3d 104s1 而不是 Ar3d 94s 2,各种元素的电子构型见表1.2(12页),电子处于全充满或半充满时,是比较稳定的,各种元素的电子构型见,1.2.3 原子结构与元素周期表的关系,元素的性质,取决于原子的电子数目和分布。按电子数目递增的顺序及元素性质变化规律将元素排列成为一个表,叫元素周期表。(1871年门捷列夫,63种),1.2.3 原子结构与元素周期表的关系元素的性质,取决于原,周期 等于能级组数。每一周期的元素数目等于相应能 级中轨道所容纳电子的最大数2n2。族 将元素按
16、其外围电子构型对原子分类。同族元素 的原子,其最外层电子构型相同。区 按原子中最后一个电子填充的轨道划分为S区 d区 主族元素 过渡元素P区 ds区 副族元素 f 区 内过渡元素,周期 等于能级组数。每一周期的元素数目等于相应能,。,说明:,1、周期表中各元素所在的周期数等于其主量子 数n,即电子层数(Pd除外) 。2、主族元素原子的最后电子分别进入s亚层(s 区)和p亚层(p区),外层电子构型分别为 ns1-2、np1-6。 副族元素原子的最后电子分别进入d亚层(d 区)和f亚层(f区),外层电子构型分别为 (n1)d1-10ns1-2,(n-2)f1-14ns1-2。3、原子的外层电子电子
17、构型相同的纵行,叫族,。说明:1、周期表中各元素所在的周期数等于其主量子,1.2.4 元素性质变化的周期性,1原子半径 共价半径 金属半径 范德华半径2电离能 ( I ),3电子亲和能( EA)4电负性( ) Kai5. 氧化数,1.2.4 元素性质变化的周期性1原子半径3电子亲和能,1原子半径,1原子半径,hecheng物质结构基础good课件,同一周期中:主族元素随着核电荷数的增加(自左至右),原子半径依次缩小(邻近元素相差约10pm)。自上而下 原子半径依次增大。副族元素随着核电荷数的增加,原子半径略有减小(镧系半径减小极其缓慢,不足1pm镧系收缩),同一周期中:,hecheng物质结构
18、基础good课件,2电离能 (I),使一个气态的基态原子失去一个电子变成一个气态的一价正离子所需要的能量,为该原子的第一电离能(I1), 在相同条件下,从气态的一价正离子再失去一个电子变成一个气态的二价正离子所需要的能量,为该原子的第二电离能(I2),余此类推。,2电离能 (I),hecheng物质结构基础good课件,随着失去电子数的增加,其电离能依次增大。电离能的大小,反映了原子失去电子变成正离子的难易。I1越小,原子越易失去电子,元素的金属性越强;反之,I1越大,原子越难失去电子,元素的金属性越弱。,hecheng物质结构基础good课件,原子的核电荷原子半径原子的电子层结构,思考题,电
19、离能的大小主要取决于:,原子的核电荷思考题 电离能的大小主要取决于:,同一周期的元素,从左到右,I1总的趋势是增大;从左到右,有效核电荷增加,原子失去电子越来越困难;同一族的元素,从上到下,I1随原子半径的增大而减小。从上到下,原子半径增大,核电荷虽然也增加,但由于内层电子数增加,屏蔽效应显著增加,核对外层电子的吸引作用被屏蔽作用所削弱,故外层电子易失去。另外应注意:当电子数处于半充满或全充满时,其I1较大,如N的I1比C和O都大。,同一周期的元素,,思考题,Li Be B C N O F NeI21475 421 581 564 684 812 808 949 从左到右,总的趋势是逐渐增大,
20、但Li+(2s),B+(2s2),O+(2P3)格外大,为什么?,思考题 Li Be B C,3电子亲和能(EA),气态的基态原子获得一个电子形成一个气态的负离子所放出的能量,为该原子的电子亲和能E1(取正值);依次还有E2。E1越大,原子越易获得电子,元素的非金属性越强。 电子亲和能值测定较困难,目前尚难用于作为定量衡量非金属强弱的依据。,3电子亲和能(EA) 气态的基态原子获得一个电子形,电子亲合能的大小反映了原子获得电子的难易。亲合能数值越大,则气态原子结合一个电子释放的能量越多,与电子的结合越稳定,表明该元素的原子越易获得电子,故非金属性越强。反之亦然,hecheng物质结构基础goo
21、d课件,hecheng物质结构基础good课件,4电负性,( ) Kai,电负性综合考虑了电离能和电子亲合能,它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。 元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。,4电负性,( ) Kai 电负性综合考虑,从表可见,金属元素的电负性 一般在2.0以下。非金属元素的电负性 一般在2.0以上,最活泼的非金属 元素氟的电负性值为4.0。,从表可见,,hecheng物质结构基础good课件,电负性值是一个相对值,没有单位。,电负性呈周期性变化,同一周期,从左至右依次增大,同一族中,从上到下,依次减小
22、。过渡元素的电负性值无明显规律。 电负性除判断元素的金属性和非金属性的强弱外,对于判断化学键的极性,对理解化学键的反应和性质都有重要的作用。,电负性值是一个相对值,没有单位。 电负性呈周期性,5.氧化数,元素的氧化数与原子的电子构型,特别是价电子层结构密切相关,多数元素的最高氧化数等于其原子的价层电子总数。,5.氧化数 元素的氧化数与原子的电子,价电子层是指元素原子在形成化学键时,电子 构型可能发生改变的那些电子亚层。 对于主族元素,价电子层就是最外电子层; 对于副族元素,往往还有次外层的d亚层。价电子是指元素的原子中能用来参与反应形成 化学键的电子。,价电子层是指元素原子在形成化学键时,电子
23、,例如,镁为3s 2 , 2;氯为3s 23p5, 7;铬为3d 5s1, 6;锆为4d 25s2, 4。,价电子层构型,价电子数,例如价电子层构型价电子数,1-3 化学键和分子构型,化学上将原子(或离子)间相互结合的强烈作用力称为化学键。由于元素的电负性不同,相互形成的化学键有多种类型,通常有离子键、共价键、金属键等,也不能用一种理论解释。1.3.1 离子键1.3.2 共价键,1-3 化学键和分子构型 化学上将原子(或离子)间相互结,1 离子键,1)离子键的形成2)离子键的特征3)离子极化,1 离子键,1)离子键的形成(点击播放动画),a.原子间得失电子 b.随后靠正、负离子之间静电引力而形
24、成的化学键,Na(s)+ Cl2(g) NaCl(s); fH =-411.12 kJ/mol-1,1)离子键的形成(点击播放动画) a.原子间得失电子Na(,离子键的本质是正负电荷间的静电作用力。,离子间的强度常以晶格能来定量描述。晶格能强弱的影响因素:离子电荷;离子半径。离子晶体的性能比较,离子键的本质是正负电荷间的静电作用力。离子间的,离子键的强度与离子的电荷成正比,与离子的半径成反比。,离子键的强度与离子的电荷成正比,与离子的半径成,离子晶体的性能比较,编号1234晶体NaFNaClNaBrNaI核间距d/pm2,2)离子键特征,结构特征 离子键无方向性、无饱和性。性能特征 a. 熔点
25、高、硬度大、挥发性低、韧性和延展 性差; b. 固体一般不导电,融熔态或水溶液可导电 c. 溶解度有很大差异,2)离子键特征结构特征,离子半径 d=r+r-离子电荷 得失电子数离子的电子构型 2电子构型 如:Li+、Be2+ 8电子构型 如:Na+、Mg2+ ( Mg 3s2) 18电子构型 如:Zn2+、Sn2+ ( Zn 3d104s2) 18+2电子构型 如:Sn4+ ( Sn 5s25p2) 不规则电子构型 如:Fe2+ ( Fe 3d64s2),离子的类型,离子半径 d=r+r-离子的类型,3)离子极化,球形对称分布的离子的电子云,在周围异电荷离子电场的作用下被诱导极化或发生电子云变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- hecheng 物质 结构 基础 good 课件

链接地址:https://www.31ppt.com/p-1285126.html