医疗人工智能行业技术应用现状及优势分析.docx
《医疗人工智能行业技术应用现状及优势分析.docx》由会员分享,可在线阅读,更多相关《医疗人工智能行业技术应用现状及优势分析.docx(9页珍藏版)》请在三一办公上搜索。
1、医疗人工智能行业技术应用现状及优势分析一、市场规模全球人工智能医疗器械市场规模从2016年的0.87亿美元增长至2020年的3.56亿美元,2016至2020年的年复合增长率为42.4队预计未来五年将增长至2025年的177.02亿美元,2020年至2025年的年复合增长率将为118.5%,2030年将进一步达1,136.77亿美元。我国人工智能影像医疗器械处于初期起步的快速发展阶段,随着市场需求不断增加,2020年底药监局启动了对影像辅助诊断医疗器械的注册批准,开启了我国医学影像人工智能辅助诊断产品从研发到落地的商业化推进之路。伴随监管审批效率的逐渐提高,近两年我国的人工智能医学影像诊断市场
2、将进入爆发式增长。在国家政策对医疗产业与前沿技术融合的持续推动下,我国医疗产业正由医疗信息化阶段逐渐步入医疗数据智能化阶段。预计2020年至2024年我国医疗大数据解决方案市场将保持快速增长。预计将由2019年的105亿元增长至2024年的577亿元,复合年增长率达40.5%o二、行业壁垒1、监管准入壁垒我国对医学影像人工智能产品按医疗器械进行审批监管。国家药监部门实行严格的医疗器械生产企业许可和产品注册制度,新进入该行业的企业需要通过药监部门的审核。医疗器械生产企业的审核要求严格,从事NMPA三类、二类医疗器械生产的企业应具有与生产要求相适应的生产设备、场地和环境,其生产、质量和技术负责人需
3、要具备合格的专业能力,在医疗器械注册方面,申请NMPA三类、二类医疗器械注册的企业需要提供产品技术报告、安全风险分析报告、产品性能自测报告、临床试验资料以及医疗器械检测机构出具的产品注册检测报告等资料,在产品试制、注册检验、临床试验、注册申报等环节有更为严格的标准和管理规定。人工智能医疗器械产品相关许可、认证资质的取得需要耗费大量时间及成本,对新进入者形成了一定监管准入壁垒。2、核心技术壁垒医疗影像人工智能行业属于技术密集型行业,综合应用了机器学习算法模型、深度学习、计算机视觉及医学影像相关专业技术,且人工智能技术正处于快速发展阶段,新技术研发和革新速度较快。人工智能公司普遍建立了帮助研发人员
4、提高技术和产品开发效率的研发流程和基础研发工具,在不断研发探索的过程中逐渐积累了相关技术储备,巩固了领先的技术竞争优势,形成了对行业新进入者的技术壁垒。3、专业人才壁垒医疗人工智能是一个多学科交叉、知识密集的前沿领域。行业对科技研发、创新升级、学科交叉依赖度高,需要有大量具有高水平、多学科背景的复合型专业人才支持,需要计算机、临床医学、生物医学工程、数学等多学科的专业技术人才协同研发创新,目前高校和科研机构的人才培养机制短期内无法满足行业蓬勃的需求,导致人才处于稀缺状态,因此拥有行业经验积累的研发人才是人工智能行业的重要壁垒。新进企业短期内很难招聘及培养出具备核心竞争力的人才团队。4、商业化渠
5、道壁垒医疗机构是人工智能医疗器械产品的主要终端客户,因医疗机构在全国地域分布广阔,拓展渠道并搭建服务网络需要较长的周期。医院一旦认可了某家制造商产品的临床优势和产品价值,就会对该产品产生更强的使用粘性。因此,建立了医院渠道的制造商将享有强大的先发优势,并能通过持续服务升级来进一步巩固其优势地位,对后进入的竞争者形成一定商业化渠道壁垒。三、行业基本风险特征1、技术研发风险医疗人工智能行业属于技术密集型行业,综合应用了机器学习算法模型、深度学习、计算机视觉及大数据分析等多种技术,在医疗场景应用中技术水平直接影响产品性能和用户体验。人工智能技术正处于快速发展阶段,新技术研发和革新速度较快。只有密切跟
6、踪并深入研究技术发展趋势,不断进行新业务的开发和拓展以满足快速变化的市场需求,才能保证在行业当中保持领先的竞争优势。2、市场竞争日趋激烈风险我国在医学影像人工智能领域具有巨大潜力,但产业规模依然较小,处于初期快速发展阶段,良好的前景吸引了投资者的加入,行业内企业快速成长,但目前产业需要的配套资源比较分散,缺乏标准支撑,服务能力有限,国内企业处于各自为战的状态,未来市场竞争将会进一步加剧。3、专业人才缺乏风险医学影像人工智能行业依赖于具备复合学科背景的专业研发人员。研发人员需具备对人工智能算法的专业开发能力,同时需对医疗影像行业有着较为深刻的临床场景理解。专业人才相对缺乏,未来对技术人才的争夺必
7、将日趋激烈,行业中存在着技术人员流失风险。四、行业技术应用现状及优势20世纪60年代医生开始利用计算机技术阅读X射线光片,20世纪80年代计算机辅助诊断系统成为医学影像诊断的一个研究方向。从计算机阅读到辅助诊断的研发,医生开始逐渐将人工智能纳入到了医学影像的临床应用中。人工智能在医学影像领域的临床应用主要在辅助诊断环节,应用计算机视觉及深度学习技术,集中应用于图像识别、病变检出和良恶性判断等。一方面,利用人工智能的计算机视觉技术对患者的医学影像识别获取重要信息,为经验不足的影像科医生提供帮助,提高其阅片效率;另一方面,基于深度学习技术通过大量已有影像数据和临床信息对模型进行训练,使其具备智能化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医疗 人工智能 行业 技术 应用 现状 优势 分析
链接地址:https://www.31ppt.com/p-1283274.html