基于倒置A2O工艺设计处理低碳源城污水强化脱氮综合调控技术设计研究.doc
《基于倒置A2O工艺设计处理低碳源城污水强化脱氮综合调控技术设计研究.doc》由会员分享,可在线阅读,更多相关《基于倒置A2O工艺设计处理低碳源城污水强化脱氮综合调控技术设计研究.doc(6页珍藏版)》请在三一办公上搜索。
1、基于倒置A2/O工艺处理低碳源污水强化脱氮综合调控技术研究摘要:XX市某大型污水处理厂采用倒置A2/O工艺处理低碳源城市污水。针对运行存在的反硝化能力不足,脱氮除磷效果不好和20XX调控技术的缺陷进行了强化脱氮综合调控技术的生产性试验研究。在20XX常温高温季节采取投加垃圾渗滤液投配率为0.1%、缩短初沉池HRT为原来的1/3、提高MLSS到4500mg/L、设置好氧第1段为反硝化过渡段及提高回流比等措施后,增加可利用碳源15%以上,出水NH3-N为2.5mg/L,对NH3-N的去除率为90%;出水TN为17 mg/L,对TN的去除率提高至54%,单位电耗减少15%至0.22kWh。在2008
2、20XX低温季节采用提高MLSS到6000mg/L,控制好氧区DO在1.2mg/L左右等措施,出水NH3-N为3mg/L,对NH3-N的去除率为88%;出水TN为15.5mg/L,对TN的去除率为62%。关键字:倒置A2/O工艺;低碳源;强化脱氮;温度;综合调控我国南方城市人均生活用水量大,其中洗涤、淋浴用水量占80%左右,加之南方城市雨水较多,而且排水系统多为合流制。此外,地下水渗入排水管内,化粪池的不合理设置,使得大部分城市污水浓度较低,CODcr一般为200mg/L,有的甚至更低1,难以满足系统高效脱氮对碳源的要求。倒置A2/O工艺具有缺氧段优先得到碳源,污泥回流至缺氧段,缺氧段污泥浓度
3、高,单位池容的反硝化速率明显提高,反硝化作用能够得到有效保证23,回流的所有污泥全部经历完整的释磷、吸磷过程,系统的除磷效果也更好的特点,使得该工艺已成为三峡库区污水处理厂的典型工艺,应用较多。本文通过对某大型污水处理的倒置A2/O工艺的强化脱氮的综合调控技术的研究,实现低碳源污水处理稳定达标排放,可为我国城市污水处理厂的调控运行提供借鉴。1.试验场地及方法试验以XX市某大型污水处理厂为基地,该厂污水日处理能力为60104m3/d,雨季135104m3/d,目前已处于满负荷运行状态,正在进行三期20104m3/d扩建工程。该厂采用倒置A2/O生物脱氮除磷工艺见图1,其中初沉池与二沉池均为平流式
4、沉淀池,好氧区由3段廊道构成。图1污水处理厂工艺流程Fig.1 Flow chart of wastewater treatment process该厂进出水质情况见表1,可知进水水质变化较大,与设计值相差甚远,对于脱氮工艺来说通常要求BOD5/TN4.0,从上表中可以看出该厂的进水BOD5/TN为2.5左右,属于低碳源污水。表1 污水处理厂进、出水水质Tab.1 Designed wastewater quality condition 项目CODCrBOD5SSTPNH3-NTN设计值36018025053545平均值2401003205.426.243注:出水水质执行GB18918-20
5、02标准的一级B标准初期运行BOD5、CODCr、SS、去除效果较好,均能持续稳定达标。NH3-N出水始终稳定在0.5mg/L左右,去除率达95%以上。但TN、TP出水严重超标,平均去除率仅在37%、40%,反硝化能力相对不足。通过20XX控制好氧第3段为过渡段,延长反硝化区长度等工艺调控,TN、TP能够满足达标,但存在好氧第3段由于曝气控制不精确,导致在该区域污泥浓度变化较大,影响在线MLSS仪表的准确监测,偶尔还会出现死泥上浮现象,导致出水SS超标。为使得出水能够长期稳定达标,20XX进行了常温高温、低温两种条件下的生产性试验。2.常温高温季节强化脱氮综合调控及效果分析2.1常温高温季节强
6、化脱氮综合调控技术2.1.1优先利用碳源脱氮与辅助化学除磷由于氮的性质决定其难以经济的通过化学方法去除,而TP较容易通过化学沉淀去除。故采取优先利用有限的碳源满足TN的生物去除,采取生物脱氮除磷为主,辅助化学除磷的生物-化学协同作用技术。目前每天投加2.4吨左右有效液态聚铁盐除磷剂,在曝气池出水处投加,利用跌水能量充分混合辅助除磷。2.1.2碳源的补充与有效利用1缩短初沉池HRT增加系统利用碳源初沉池在去除原水中的部分悬浮固体的同时,也导致了大量碳源的去除。该厂采取每座初沉池开启6格中的2格的措施,HRT由1.69hr缩短到0.56hr。使进入A2/O池的可利用碳源量得到增加。2外加碳源投加垃
7、圾渗滤液该厂从20XX起开始投加当地某垃圾填埋场的渗滤液,每天根据进水水质情况,选择性地投加某垃圾填埋场的渗滤液400t,投配率为0.1%垃圾渗滤液投加量与污水日处理量之比。同时为了保证均匀的投加到污水中,投加点选择在初沉池进水渠道处。2.1.3运行工况调整1延长反硝化段长度设置好氧缺氧过渡段20XX将好氧缺氧过渡区调整到好氧第1段,延长反硝化时间,调整段长度根据NH3-N沿程硝化情况试验确定。由于好氧池缺少搅拌器,为了防止第1段污泥的下沉堵塞微孔曝气头和造成污泥老化,通过调整曝气支管的阀门开启度来控制曝气量,使活性污泥处于悬浮状态,同时对第三段内回流区域实施DO控制。2提高系统污泥浓度该厂的
8、MLVSS/MLSS在0.30.45之间,低于一般污水厂的0.7。采用设计的污泥浓度3300mg/L运行,实际的可挥发性污泥浓度MLVSS偏低,难以保证系统反硝化菌的量。故系统采用较高的MLSS 45005000mg/L。 3提高回流比只有将尽可能多的硝酸盐态氮回流到前置缺氧区,反硝化作用才可以进行,才能够得到较高的氮去除率。研究表明单纯加大污泥回流比单纯加大污水回流的TN去除效果好,故该厂内回流比、外回流比分别调整为200%与100%,其中外回流比的增大幅度大于硝化液回流比。2.2.结果与分析2.2.1倒置A2/O池中碳源有效利用情况垃圾渗滤液中由于具有较高的含碳量,这使得利用其作为污水处理
9、的补充碳源具有一定的可行性4。垃圾渗液浓度波动很大,该厂接受的渗滤液属于早期渗滤液,经过抽样监测CODcr为50008000mg/L,NH3-N为4001000mg/L。渗滤液CODcr/TN为715,高于该厂进水中的CODcr/TN值,因此可为城市污水处理补充部分碳源,同时为垃圾填埋场渗滤液处理系统容量不足提供了一个解决方法。当投加量超过一定范围时,垃圾渗滤液中所含重金属、有毒有机物等会对活性污泥造成一定的毒害。该厂在渗滤液投配率为0.1%左右时,生物反应池中活性污泥表现为絮凝体较大,具有良好的吸附和沉降性能5。通过对初沉池进出口处CODcr值的多次监测监测数据见表2,前3次是每座池子6格全
10、开时CODcr的平均去除率为35%左右,后3次是在关闭其中的4格后,CODcr的平均去除率减少到20%左右,进入生化池中的COD浓度提高了15%。表2 初沉池缩短停留时间前后进、出水CODcr变化情况Tab.2 Change of CODcr before and after shorten Primary sedimentation tank HRT监测次数初沉池进水CODcr初沉池出水CODcr去除率%第一次26017233.8第二次37024035.1第三次29418038.7第四次27722518.7第五次38830222.1第六次40232020.3没有选择完全超越初沉池,主要是考虑
11、到该厂的旋流沉砂池对细砂的去除效果不佳。在开启初沉池格数的1/3,既可以补充部分碳源,又可以弥补沉砂池缺陷。2.2.2 对NH3-N的去除效果在采取以上措施后,对20XX12个月NH3-N进、出水月平均值进行统计分析,系统对NH3-N的去除率在90%左右。实际进水中NH3-N浓度波动较大,但出水NH3-N浓度基本在2.5mg/L左右,说明在硝化区容积减少的情况下,系统仍然具有很强的抗NH3-N冲击负荷能力。好氧段内的硝化菌在与异养菌的在竞争中成为优势菌,另外MLSS一直维持在4500mg/L左右的高浓度,有大量的硝化菌聚集,为实现高效硝化创造条件。2.2.3 对TN的去除效果从TN的去除效果的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 倒置 A2O 工艺 设计 处理 碳源 污水 强化 综合 调控 技术设计 研究
链接地址:https://www.31ppt.com/p-1180338.html