220KV中性点直接接地电网继电保护设计.doc
《220KV中性点直接接地电网继电保护设计.doc》由会员分享,可在线阅读,更多相关《220KV中性点直接接地电网继电保护设计.doc(15页珍藏版)》请在三一办公上搜索。
1、摘要在电力系统中,电力系统中性点的接地方式一般是指供电或者配电端电力变压器中性点的接地方式,接地方式的选择直接影响到电力运行的安全性稳定性和经济性.随着电力科学技术的不断发展和我国电网结构的日趋复杂,出现了许多新型的接地技术以与新的接地标准.本设计对220KV电网进行了继电保护和自动装置整定计算,根据本在满足继电保护四性要求的前提下,求得最佳方案,电网的特点和运行要求分别配置了零序、距离、高频以与横差保护,最后对全套保护进行了评价.1 概述在我国中压电网的供电系统中,大部分为小电流接地系统即中性点不接地或经消弧线圈或电阻接地系统.我#用经消弧线圈接地方式已运行多年,但近几年有部分区域采用中性点
2、经小电阻接地方式,为此对这两种接地方式作以分析,对于中性点不接地系统,因其是一种过度形式,其随着电网的发展最终将发展到上述两种方式.1.1中性点经小电阻接地方式世界上以美国为主的部分国家采用中性点经小电阻接地方式,原因是美国在历史上过高的估计了弧光接地过电压的危害性,而采用此种方式,用以泄放线路上的过剩电荷,来限制此种过电压.中性点经小电阻接地方式中,一般选择电阻的值较小.在系统单相接地时,控制流过接地点的电流在500A左右,也有的控制在100A左右,通过流过接地点的电流来启动零序保护动作,切除故障线路.其优缺点是: 1系统单相接地时,健全相电压不升高或升幅较小,对设备绝缘等级要求较低,其耐压
3、水平可以按相电压来选择.2接地时,由于流过故障线路的电流较大,零序过流保护有较好的灵敏度,可以比较容易检除接地线路.3由于接地点的电流较大,当零序保护动作不与时或拒动时,将使接地点与附近的绝缘受到更大的危害,导致相间故障发生.4当发生单相接地故障时,无论是永久性的还是非永久性的,均作用与跳闸,使线路的跳闸次数大大增加,严重影响了用户的正常供电,使其供电的可靠性下降.1.2大电流接地我国220kV与以上电网一般采用大电流接地方式,即中性点直接接地方式,中性点电位固定为地电位,发生单相接地故障时,通过大地形成回路,就形成单相短路.发生单相故障时非故障相电压不会升太高,暂态过电压水平也较低,故障电流
4、很大,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短.大电流接地系统系统产生的内过电压最低,因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价.但是大电流接地系统在发生单相接地时所产生的大电流对通讯系统的干扰影响很大,当电力线路与通讯线路平行走向时,由于耦合产生感应电压,会对通讯造成干扰.1.3小电流接地635kV配电网一般采用小电流接地方式,即中性点非直接接地方式.中性点非直接接地方式主要可分为以下三种:不接地、经消弧线圈接地与经电阻接地.1.4中性点不接地方式 适用于单相接地故障电容电流低于10A以下的线路,以架空线路为主,尤其是农村10kV配电网,此类型电
5、网瞬间单相接地故障率占60%70%.发生单相接地故障时故障相电流仅为电容电流且小于10A.因此当发生单相接地故障时故障点电弧可以自熄,线路不跳闸,只报异常信号,可带故障运行一段时间,以保证供电连续性.且对通讯的干扰也比较小.发生单相接地故障时非故障相电压升高至线电压.因此对电气设备绝缘要求较高,一般都按线电压等级设计.在电容电流大于10A的情况下,极容易产生过电压等级相当高的间歇性弧光接地过电压,且持续时间较长,危与网内绝缘薄弱设备,继而引发两相接地故障,引起停电事故.中性点经电阻接地适于瞬间性单相接地故障较少的电力电缆线路.该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释
6、放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性.中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式.1.5中性点经电阻接地运行方式的特点:降低操作过电压,中性点经电阻接地的配网发生单相接地故障时,零序保护动作,可准确判断并快速切断故障线路;可有效降低工频过电压,单相接地故障时非故障相电压不升高,对设备绝缘等级要求较低,其耐压水平可以按相电压来选择;当发生单相接地故障时,无论是永久性的还是非永久性的,均作用与跳闸,使线路的跳闸次数大大增加,严重影响了用户的正常供电,使其供电的可靠性下降;有效地限制弧光接地过电压,当电弧熄灭后,系统对地电容中的残余电
7、荷将通过接地电阻泄放掉,下次电弧重燃时,不会叠加形成过电压;可有效消除系统内谐振过电压,中性点电阻接地相当于在谐振回路中并接阻尼电阻,试验表明,只要中性点电阻1500,就可以消除各种谐振过电压,电阻越小,消除谐振的效果越好;对电容电流变化的适用范围较大,简单、可靠、经济.中性点经消弧线圈接地.适用于单相接地故障电容电流大于10A,瞬间性单相接地故障较多的架空线路为主的配电网.其特点为:利用消弧线圈的感性电流补偿接地点流过的电网容性电流,使故障电流的故障.架空线路故障大都是瞬时性的,在线路被断开以后再进行一次合闸能大大提高供电的可靠性.为此,在电力系统中采用了自动重合闸.即当断路器跳闸以后,这种
8、装置能够自动地将断路器重新合闸.自动重合闸装置应按下列规定装设:在lkV与以上的架空线路和电缆与架空的混合线路中,当具有断路器时,应装设自动重合闸装置;旁路断路器和兼作旁路的母线联络断路器或分段断路器,宜装设自动重合闸装置;低压侧不带电源的降压变压器,应装设自动重合闸装置;必要时母线可装设自动重合闸装置.各种自动重合闸装置中,综合重合闸为较先进的一种.本设计采用微机保护装置,系统中所有线路均装设综合重合闸.线路配置:主保护采用方向高频;后备保护距离保护作为相间短路保护,零序电流保护作为接地短路保护.2.3 微机保护装置简介本系统采用WXB-15型微机高压线路保护装置.WXB-l5型系列装置是使
9、用硬件实现的成套微机高压线路保护装置,适用于110kV500kV各电压等级的输电线路.主保护为快速方向高频保护.WXB-15型微机方向高频保护的推出,为同一回路配置相同硬件不同原理的双套主保护提供了可能.a. 本装置硬件特点采用了多单片机并行工作的硬件结构,装置设置了四个硬件完全相同的CPU插件,每个插件独立完成一种保护功能.采用电压频率转换原理构成的模数转换器,它具有工作稳定、精度高、接口简单和调试方便等优点.跳闸出口回路采用三取二方式,提高了整套保护装置的可靠性.采用液晶显示、菜单操作、使人机对话更加简单、灵活.具有RS232接口,可将全站微机保护就地联网.保护配置示意图如表1所示.CPU
10、CPU1CPU2CPU3CPU4 保护功能型号高频距离高频零序高频负序方向高频相间距离接地距离零序综重WXB-15WXB-15A表1保护配置示意图b. 各种保护配置与其特点快速方向高频保护它是由突变量方向元件、零序和负序方向元件完成的快速方向高频保护构成WXB-l5系列微机保护装置的主保护,由CPU1实现保护功能,可选用允许式或闭锁式.突变量方向元件具有明确的方向性且动作迅速.距离保护它是由三段式相间距离和接地距离构成的距离保护作为各套保护的基本配置,由CPU,实现.用于切除出口短路故障的快速I段的距离元件动作时间不大于llms,当系统发生第一次故障时,采用电压记忆保证方向性.若在振荡期间发生
11、故障,刚采用负序方向元件把关,仅在出口完全三相对称短路时采用偏移特性.阻抗特性采用四边形特性.零序保护零序保护由CPU3实现,由四段全相运行时的零序保护和两段非全相运行时的不灵敏段零序保护构成.装置设置了3U0零序保护突变量闭锁元件,以防止CT断线时零序保护误动.综合重合闸综合重合闸由CPU.实现,设有单重、三笪、综重和停用四种方式,装置还设有M、N、P端子,以供外部不能选相的保护经本装置综重的选相元件选相跳闸.本装置各套保护均设有独立的选相元件,由相电流差突变量选相元件与阻抗选相元件来实现.综重的选相元件仅供外部无选相能力的保护经本装置出口处时使用.c. 主要技术数据额定数据 直流电压:22
12、0V或110V 交流电压:相电压:100/V,开口电压:100V交流电流:5A或lA 订货注明,频率:50Hz整定范围,距离元件:0.0599.9电流元件:0.05A99.9A时词元件:保护跳闸时间:接地故障为0l2s;相间故障为04.5s其他为015.9s.精确工作范围距离元件:精确工作电压0. 5V;.精确工作电流In或 In.零序方向元件,最小动作电压2V固定;最小动作电流0.1In.突变量方向元件:最小动作电压4V;最小动作电流0.3In.2.4电器主接线与主要电气设备的选择2.4.1 220KV电压级接线方式220KV有五回线路,预留一回备用,因而220KV母线的接线形式可选用双母线
13、接线形式,双母线分段接线,双母线带旁母设有专门旁路断路器的接线形式.双母线特点双母线接有两组母线,并且可以互为备用.每一电源和出线的回路,都装有一台断路器,有两组母线隔离开关,可分别与两组母线连接.两组母线之间的联络,通过母线联络断路器来实现.采用双母线接线,有两组母线后,使运行的可靠性和灵活性大为提高.其特点有:1供电可靠.2调度灵活.3扩建方便.双母线分段接线比双母线接线的可靠性更高,当一段工作母线发生故障后,在继电保护作用下,分段断路器先自动跳开,而后将故障段母线所连的电源回路的断路器跳开,该段母线所连的出线回路停电;随后,将故障母线所连的电源回路和出线回路切换备用母线上,即可恢复供电.
14、这样,只是部分短时停电,而不必全部短期停电.虽然这种接线具有很高的可靠性和灵活性,但增加了母联断路器和分段断路器的数量,配电装置接资较大.双母线带旁母的特点带有专门旁路断路器的接线,多装了价高的断路器和隔离开关,增加了投资,然而这对于接入旁路母线的一路回数较多,且对供电可靠性有特殊需要的场合是十分必要的.不采用专用旁路母线的接线,虽然可以节约建设投资,但是检修出线断路器的倒闸操作十分繁杂,而且对于无论是单母线分段接线还是双母线接线,在检修期间均处于单母线不分段运行状况,极大地降低了可靠性.所用电接线所用电接线的原则是:所用电接线应保证对所用负荷可靠和连续供电;接线能灵活地适应正常、事故、检修等
15、各种运行方式的要求;设计时还应适当注意其经济性和发展的可能性并积极慎重地采用新技术、新设备,使所用接线具有可行性和先进性;在设计所用电接线时,还应对所用电的电压等级、中性点接地方式、所用电源与其引接和所用电接线形式等问题进行分析和论证.所用负荷根据供电重要性可分为三类:经常连续、短时不经常、连续不经常.所用电系统接线通常都采用单母线分段接线形式,并多以成套配电装置接受和分配电能.2.5 高压断路器与隔离开关的选择变压器220KV侧断路器与隔离开关的选择最大持续工作电流为Imax=1.05SN/31/2/UN=1.05150/31/2/220=0.41KA查表可选SW6220/1200型少油断路
16、器短路时间:tk=0.06+0.06+0.06=0.18A2.5.2 220KV进线断路器与隔离开关选择最大负荷电流为:Imax=1.05SN/31/2UN=1.05213/31/2/220=0.58KA查表可选SW6220/1200型少油断路器 母线的选择220KV侧母线的选择最大工作电流为:0.41KA J=1.07 S=4102/1.07=766mm2故可选择2根型号为LGJ400/20的导线,其载流量为1600A.220KV侧进线的选择最大工作电流为: Imax=0.41KAS=410/1.07=383mm2故可选择1根型号为LGJ400/20的导线,其载流量为800A.2.6 系统运
17、行方式的制定在选择保护方式与进行整定计算时,都必须考虑系统运行方式变化带来的影响,所选用的保护方式应在各种运行方式下,都能满足选择性和灵敏性的要求.对过量保护来说,通常都是根据系统最大运行方式来确定保护的整定值,以保证选择性,因为只要在最大运行方式下能保证选择性,在其他运行方式下也一定能保证选择性.灵敏度的校验应根据最小运行方式来进行,因为只要在最小运行方式下,灵敏度符合要求,在其他运行方式下,灵敏度也一定满足要求,对某些保护,在整定计算时还要按正常运行方式来决定动作值或计算灵敏度.a. 最大运行方式根据系统最大负荷的需要,电力系统中的发电设备都投入运行且选定的接地中性点全部接地的系统运行方式
18、称为最大运行方式.对继电保护来说,是短路时通过保护的短路电流最大的运行方式.b. 最小运行方式根据系统最小负荷,投入与之相适应的发电设备,且系统中性点只有少部分接地的运行方式为最小运行方式.在有水电厂的系统中,要考虑水电厂运行受水能状态限制的运行方式.对继电保护来说,是短路时通过保护的短路电流最小的运行方式.c. 正常运行方式根据系统正常负荷的需要,投入与之相适应数量的发电机、变压器和线路的运行方式称为正常运行方式.这种运行方式在一年内的运行时间最长.2.7 变压器中性接地点的选择大接地系统发生接地短路时,零序电流的大小与分布和变压器中性接地点的数目与位置有密切的关系,中性接地点的数目越多,意
19、味着系统零序总阻抗越小,零序电流越大,中性接地点的位置不同,则意味着零序电流的分布不同.通常,变压器中性接地位置和数目按以下两个原则考虑:一是使零电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变.变压器中性接地点的位置和数目的具体选择原则如下:a. 对单电源系统,线路末端变电站的变压器一般不应接,这样可以提高线路首端零序电流保护的灵敏度.b. 对多电源系统,要求每个电源点都有一个中性点接地,以防接地短路的过电压对变压器产生危害.c. 当一个变电站有多台变压器运行时,应将一部分变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 220 KV 中性 直接 接地 电网 保护 设计
链接地址:https://www.31ppt.com/p-1149482.html