平方差完全平方公式培优152940.doc
《平方差完全平方公式培优152940.doc》由会员分享,可在线阅读,更多相关《平方差完全平方公式培优152940.doc(26页珍藏版)》请在三一办公上搜索。
1、平方差完全平方公式一选择题共1小题11999某某如下代数式,x2+x,其中整式有A1个B2个C3个D4个二填空题共3小题22011某某多项式2x23x+5是_次_项式32010某某地区写出含有字母x,y的四次单项式_答案不唯一,只要写出一个4 2004某某把多项式2x23x+x3按x的降幂排列是_5 1999内江配方:x2+4x+_=(x+_2配方:x2-x+_=(x-2三解答题共26小题5计算:1xyx+yx2+y22a2b+ca+2bc6计算:12321241227计算:8x2y+zx+2y+z9运用乘法公式计算1x+y2xy2;2x+y2xy+2;80.2;210化简:m+n2m+n+2
2、11x2ymx2y+m12计算1ab+cdcadb;2x+2yx2yx48x2y2+16y413计算:2008220072+2006220052+221214利用乘法公式计算:a3b+2ca+3b2c4729427+27215:x2y2=20,x+y=4,求xy的值_16观察如下各式:x1x+1=x21;x1x2+x+1=x31;x1x3+x2+x+1=x411根据上面各式的规律得:x1xm1+xm2+xm3+x+1=_;其中n为正整数;2根据这一规律,计算1+2+22+23+24+268+269 的值17先观察下面的解题过程,然后解答问题:题目:化简2+122+124+1解:2+122+12
3、4+1=212+122+124+1=22122+124+1=24124+1=281问题:化简3+132+134+138+1364+118192012黄冈实数x满足x+=3,如此x2+的值为_202007某某假如a22a+1=0求代数式的值212009某某阅读材料:把形如ax2+bx+c的二次三项式或其一局部配成完全平方式的方法叫做配方法配方法的根本形式是完全平方公式的逆写,即a22ab+b2=ab2例如:x12+3、x22+2x、x22+x2是x22x+4的三种不同形式的配方即“余项分别是常数项、一次项、二次项见横线上的局部请根据阅读材料解决如下问题:1比照上面的例子,写出x24x+2三种不同
4、形式的配方;2将a2+ab+b2配方至少两种形式;3a2+b2+c2ab3b2c+4=0,求a+b+c的值222004某某实数a、b满足a+b2=1,ab2=25,求a2+b2+ab的值232001某某设ab=2,求的值24x+y2=49,xy2=1,求如下各式的值:1x2+y2;2xy25x+=4,求x的值26:x+y=3,xy=2,求x2+y2的值27a+b=3,ab=2,求a2+b2,ab2的值28假如x+y=2,且x+2y+2=5,求x2+xy+y2的值29x211x+1=0,求x2+的值30已,求如下各式的值:1;2平方差完全平方公式参考答案与试题解析一选择题共1小题11999某某如
5、下代数式,x2+x,其中整式有A1个B2个C3个D4个考点:整式分析:解决此题关键是搞清整式的概念,紧扣概念作出判断解答:解:整式有x2+x,共2个应当选B点评:主要考查了整式的有关概念要能准确的分清什么是整式整式是有理式的一局部,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母单项式和多项式统称为整式单项式是字母和数的乘积,只有乘法,没有加减法多项式是假如干个单项式的和,有加减法二填空题共3小题22011某某多项式2x23x+5是二次三项式考点:多项式专题:计算题分析:根据单项式的系数和次数的定义,多项式的定义求解解答:解:由题意可知,多项式2x23x+5是 二次 三项式
6、故答案为:二,三点评:此题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数32010某某地区写出含有字母x,y的四次单项式x2y2答案不唯一,只要写出一个考点:单项式专题:开放型分析:单项式的次数是指单项式中所有字母因数的指数和x3y,x2y2,xy3等都是四次单项式解答:解:根据四次单项式的定义,x2y2,x3y,xy3等都符合题意答案不唯一点评:考查了单项式的次数的概念只要两个字母的指数的和等于4的单项式都符合要求42004某某把多项式2x23x+x3按x的降幂排列是x3+
7、2x23x考点:多项式分析:按照x的次数从大到小排列即可解答:解:按x的降幂排列是x3+2x23x点评:主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号三解答题共26小题5计算:1xyx+yx2+y22a2b+ca+2bc考点:平方差公式;完全平方公式分析:1xy与x+y结合,可运用平方差公式,其结果再与x2+y2相结合,再次利用平方差公式计算;2先运用平方差公式,再应用完全平方公式解答:解:1xyx+yx2+y2,=x2y2x2+y2,=x4y4;2a2b+ca+2bc,=a22bc2,=a24b2+4bcc2点评:此题主要考查了平方差公式与完全平方
8、公式,熟记公式是解题的关键平方差公式:a+bab=a2b2完全平方公式:ab2=a22ab+b26计算:1232124122考点:平方差公式分析:先把124122写成123+11231,利用平方差公式计算,去掉括号后再合并即可解答:解:1232124122,=1232123+11231,=1232123212,=1点评:此题考查平方差公式的实际运用,构造成平方差公式的结构形式是解题的关键7计算:考点:平方差公式分析:观察可得:2005=2004+1,2003=20041,将其写成平方差公式代入原式计算可得答案解答:解:,=,=,=2004点评:此题考查平方差公式的实际运用,注意要构造成公式的结
9、构形式,利用公式达到简化运算的目的8x2y+zx+2y+z考点:平方差公式专题:计算题分析:把原式化为z+x2yzx2y,再运用平方差公式计算解答:解:x2y+zx+2y+z,=z+x2yzx2y,=z2x2y2,=z2x24xy+4y2,=z2x2+4xy4y2点评:此题考查了平方差公式,整体思想的利用是利用公式的关键,注意运用公式计算会减少运算量9运用乘法公式计算1x+y2xy2;2x+y2xy+2;80.2;2考点:平方差公式专题:计算题分析:1x+y2xy2可以利用平方差公式进展计算;2x+y2xy+2转化成x+y2xy2的形式,利用平方差公式以与完全平方公式进展计算;80.2可以转化
10、成800.280+0.2的形式,利用平方差公式计算;2可以转化为200.12进展简便计算解答:解:1x+y2xy2=x+y+xyx+yx+y,=4xy;2x+y2xy+2,=x+y2xy2,=x2y2+4y4;80.2,=800.280+0.2,=6399.96;2=200.12=4002200.1+0.01,=396.01点评:此题主要考查平方差公式和完全平方公式的运用,利用完全平方公式以与平方差公式可以使计算更加简便10化简:m+n2m+n+2考点:平方差公式分析:把m+n看作整体,m+n是一样的项,互为相反项是2与2,然后利用平方差公式和完全平方公式计算即可解答:解:m+n2m+n+2,
11、=m+n222,=m2+n2+2mn4点评:此题主要考查了平方差公式的应用运用平方差公式a+bab=a2b2计算时,关键要找一样项和相反项,其结果是一样项的平方减去相反项的平方11x2ymx2y+m考点:平方差公式专题:计算题分析:把x2y当成一个整体,利用两数的和乘以这两数的差,等于它们的平方差计算即可解答:解:x2ymx2y+m,=x2y2m2,=x24xy+4y2m2点评:此题主要考查了平方差公式,整体思想的利用比拟关键12计算1ab+cdcadb;2x+2yx2yx48x2y2+16y4考点:平方差公式专题:计算题分析:根据平方差公式以与完全平方公式即可解答此题解答:解:1原式=cbd
12、+acbda=cbd2a2=c2+b2+d2+2bd2bc2cda2,2x48x2y2+16y4=x24y22原式=x24y2x24y22=x24y23=x233x224y2+3x24y224y23=x612x4y2+48x2y464y6点评:此题考查了平方差公式以与完全平方公式的运用,难度适中13计算:2008220072+2006220052+2212考点:平方差公式分析:分组使用平方差公式,再利用自然数求和公式解题解答:解:原式=2008220072+2006220052+2212,=2008+200720082007+2006+200520062005+2+121,=2008+2007
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平方 完全 公式 152940
链接地址:https://www.31ppt.com/p-1132192.html