排列组合二项式定理知识点.doc
《排列组合二项式定理知识点.doc》由会员分享,可在线阅读,更多相关《排列组合二项式定理知识点.doc(6页珍藏版)》请在三一办公上搜索。
1、- 排列组合二项定理考试容:数学探索所有.delve.分类计数原理与分步计数原理数学探索所有.delve.排列排列数公式数学探索所有.delve.组合组合数公式组合数的两个性质数学探索所有.delve.二项式定理二项展开式的性质数学探索所有.delve.考试要求:数学探索所有.delve.1掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题数学探索所有.delve.2理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题数学探索所有.delve.3理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题数学探索所有.delve.4掌握二
2、项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题排列组合二项定理知识要点一、两个原理.1. 乘法原理、加法原理.2. 可以有重复元素的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,则第一、第二第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数mm m = mn. 例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法? 解:种二、排列.1. 对排列定义的理解.定义:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.一样排列.如果;两个排列一样,不仅这两
3、个排列的元素必须完全一样,而且排列的顺序也必须完全一样.排列数.从n个不同元素中取出m(mn)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示.排列数公式: 注意: 规定0! = 1 规定2. 含有可重元素的排列问题.对含有一样元素求排列个数的方法是:设重集S有k个不同元素a1,a2,.an其中限重复数为n1、n2nk,且n = n1+n2+nk, 则S的排列个数等于. 例如:数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数. 三、组合.1. 组合:从n个不同的元素中任取m(mn)个元素并成一组,叫做
4、从n个不同元素中取出m个元素的一个组合.组合数公式:两个公式: 从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出 n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于*一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有
5、C种,依分类原理有. 排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排,后者是“并成一组,前者有顺序关系,后者无顺序关系.几个常用组合数公式常用的证明组合等式方法例.i. 裂项求和法. 如:利用ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法即用递推如:.vi.构造二项式. 如:证明:这里构造二项式其中的系数,左边为,而右边四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型:直接法. 排除法.捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部的排列.它主要用于解决“元素相邻问
6、题,例如,一般地,n个不同元素排成一列,要求其中*个元素必相邻的排列有个.其中是一个“整体排列,而则是“局部排列.又例如有n个不同座位,A、B两个不能相邻,则有排列法种数为.有n件不同商品,假设其中A、B排在一起有.有n件不同商品,假设其中有二件要排在一起有.注:区别在于是确定的座位,有种;而的商品地位一样,是从n件不同商品任取的2个,有不确定性.插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题.例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?插空法,当n m+1m, 即m时有意义.占位法:从元素的特殊性上讲,对问题中的特殊
7、元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般的解题原则.调序法:当*些元素次序一定时,可用此法.解题方法是:先将n个元素进展全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的*一种排法,可以利用除法起到去调序的作用,即假设n个元素排成一列,其中m个元素次序一定,共有种排列方法.例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?解法一:逐步插空法m+1m+2n = n!/ m!;解法二:比例分配法.平均法:假设把kn个不同元素平均分成k组,每组n个,共有.例如:从1,2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 二项式 定理 知识点
链接地址:https://www.31ppt.com/p-1091525.html