220v变电站电气部分设计毕业论文.doc
《220v变电站电气部分设计毕业论文.doc》由会员分享,可在线阅读,更多相关《220v变电站电气部分设计毕业论文.doc(45页珍藏版)》请在三一办公上搜索。
1、- 电子与电气工程系毕 业 论 文题 目220V变电站电气局部设计专 业班 级学 号 学生姓名 指导教师 完成日期 目录第1章电气主接线的设计- 4 -1.1 主接线概述- 4 -1.2 主接线设计原则- 7 -1.3 主接线选择- 7 -第2章主变压器的选择- 10 -2.1 主变压器的选择原则- 10 -2.1.1 主变压器台数的选择- 11 -2.1.2 主变压器容量的选择- 11 -2.1.3 主变压器型式的选择- 12 -2.1.4 绕组数量和连接形式的选择- 12 -2.2 主变压器选择结果- 13 -第3章无功功率补偿设计- 14 -3.1无功功率技术的现状- 13 -3.2 无
2、功功率补偿技术的开展趋势- 13 -第4章 220KV变电站电气局部短路计算- 17 -4.1 短路的根本类型- 17 -4.2短路电流计算的目的- 17 -4.3 短路点确实定- 18 -4.4 计算短路电流的步骤- 18 -第5章导体和电气设备的选择- 19 -5.1 断路器和隔离开关的选择- 20 -220KV出线、主变侧- 21 -5.2 电流互感器的选择- 24 -220KV侧电流互感器的选择- 25 -5.3 电压互感器的选择- 26 -220KV侧母线电压互感器的选择- 27 -第6章防雷接地设计- 27 -6.1 防雷设计- 27 -6.1.1 防雷设计原则- 27 -6.1.
3、2 避雷器的选择- 28 -6.1.3 避雷针的配置- 29 -6.2 接地设计- 30 -6.2.1 接地设计的原则- 31 -6.2.2 接地网型式选择及优劣分析- 31 -第7章户内、外配电装置的配置和选择- 32 -7.1 配电装置作用及其根本要求- 32 -7.2 户内、外配电装置的特点- 33 -7.3 配电装置的选择- 33 -第8章继电保护的配备- 34 -第8章完毕语- 36 -致谢错误!未定义书签。附录- 36 -摘 要随着我国科学技术的开展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。本设计讨论的是220KV变电站电气局部的设计。首先对原始资料进展分析,选
4、择主变压器,在此根底上进展主接线设计,再进展短路计算,选择设备,然后进展防雷接地以及保护、配电装置设计。关键字:变电站;短路计算;设备选择。 引 言毕业设计是我们在校期间最后一次综合训练,它将从思维、理论以及动手能力方面给予我们严格的要求。使我们综合能力有一个整体的提高。它不但使我们稳固了本专业所学的专业知识,还使我们了解、熟悉了国家能源开发策略和有关的技术规程、规定、导则以及各种图形、符号。它将为我们以后的学习、工作打下良好的根底。能源是社会生产力的重要根底,随着社会生产的不断开展,人类使用能源不仅在数量上越来越多,在品种及构成上也发生了很大的变化。人类对能源质量也要求越来越高。电力是能源工
5、业、根底工业,在国家建立和国民经济开展中占据十分重要的地位,是实现国家现代化的战略重点。电能也是开展国民经济的根底,是一种无形的、不能大量存储的二次能源。电能的发、变、送、配和用电,几乎是在同时瞬间完成的,须随时保持功率平衡。要满足国民经济开展的要求,电力工业必须超前开展,这是世界开展规律。因此,做好电力规划,加强电网建立,就尤为重要。而变电站在改变或调整电压等方面在电力系统中起着重要的作用。它承担着变换电压、承受和分配电能、控制电力的流向和调整电压的责任。220KV变电站电气局部设计使其对变电站有了一个整体的了解。该设计包括以下任务:1、主接线的设计 2、主变压器的选择 3、短路计算 4、主
6、要设备的选择 5、无功补偿设计 6、防雷接地设计 7、配电装置设计 8、继电保护的配置第一章 电气主接线的设计1.1 主接线概述电气主接线是由电气设备通过连接线,按其功能要求组成承受和分配电能的电路,成为传输强电流、高电压的网络。用规定的电气设备图形符号和文字符号并按工作顺序排列,详细地表示电气设备或成套装置的全部根本组成和连接关系的单线接线图。主接线代表了发电厂或变电站电气局部的主体构造,是电力系统网络构造的重要组成局部,直接影响运行的可靠性、灵活性并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。1.1.1 各级电压母线接线单母线接线及单母线分段接线1、单母线
7、接线单母线接线供电电源在变电站是变压器或高压进线回路。母线既可保证电源并列工作,又能使任一条出线都可以从任一个电源获得电能。各出线回路输入功率不一定相等,应尽可能使负荷均衡地分配在各出线上,以减少功率在母线上的传输。单母接线的优点:接线简单,操作方便、设备少、经济性好,并且母线便于向两端延伸,扩建方便。缺点:可靠性差。母线或母线隔离开关检修或故障时,所有回路都要停顿工作,也就成了全厂或全站长期停电。调度不方便,电源只能并列运行,不能分列运行,并且线路侧发生短路时,有较大的短路电流。综上所述,这种接线形式一般只用在出线回路少,并且没有重要负荷的发电厂和变电站中。2、单母分段接线单母线用分段断路器
8、进展分段,可以提高供电可靠性和灵活性;对重要用户可以从不同段引出两回馈电线路,由两个电源供电;当一段母线发生故障,分段断路器自动将用户停电;两段母线同时故障的几率甚小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分段,任一母线故障时,将造成两段母线同时停电,在判别故障后,拉开分段隔离开关,完成即可恢复供电。这种接线广泛用于中、小容量发电厂和变电站610KV接线中。但是,由于这种接线对重要负荷必须采用两条出线供电,大大增加了出线数目,使整体母线系统可靠性受到限制,所以,在重要负荷的出线回路较多、供电容量较大时,一般不予采用。3、单母线分段带旁路母线的接线单母线分段断路器带有专用旁路断路器母线
9、接线极大地提高了可靠性,但这增加了一台旁路断路器,大大增加了投资。双母线接线及分段接线1、双母线接线双母接线有两种母线,并且可以互为备用。每一个电源和出线的回路,都装有一台断路器,有两组母线隔离开关,可分别与两组母线接线连接。两组母线之间的联络,通过母线联络断路器来实现。其特点有:供电可靠、调度灵活、扩建方便等特点5。由于双母线有较高的可靠性,广泛用于:出线带电抗器的610KV配电装置;3560KV出线数超过8回,或连接电源较大、负荷较大时;110220KV出线数为5回及以上时。2、双母线分段接线为了缩小母线故障的停电*围,可采用双母分段接线,用分段断路器将工作母线分为两段,每段工作母线用各自
10、的母联断路器与备用母线相连,电源和出线回路均匀地分布在两段工作母线上。双母接线分段接线比双母接线的可靠性更高,当一段工作母线发生故障后,在继电保护作用下,分段断路器先自动跳开,而后将故障段母线所连的电源回路的断路器跳开,该段母线所连的出线回路停电;随后,将故障段母线所连的电源回路和出线回路切换到备用母线上,即可恢复供电。这样,只是局部短时停电,而不必短期停电。双母线分段接线被广泛用于发电厂的发电机电压配置中,同时在220550KV大容量配电装置中,不仅常采用双母分段接线,也有采用双母线分四段接线的。3、双母线带旁路母线的接线双母线可以带旁路母线,用旁路断路器替代检修中的回路断路器工作,使该回路
11、不致停电。这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线的线路回数较多,并且对供电可靠性有特殊需要的场合是十分必要的7。1.2 主接线设计原则电气主接线的设计是发电厂或变电站电气设计的主题。它与电力系统、电厂动能参数、根本原始资料以及电厂运行可靠性、经济性的要求等密切相关,并对电气设备选择和布置、继电保护和控制方式等都有较大的影响。因此,主接线设计,必须结合电力系统和发电厂和变电站的具体情况,全面分析有关影响因素,正确处理它们之间的关系,经过技术、经济比较,合理地选择主接线方案。电气主接线设计的根本原则是以设计任务为依据,以国家经济建立的方针、政策、技术规定、标准为准绳,
12、结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、实用、经济、美观的原则8。1.3 主接线选择方案一:220KV侧双母接线,110KV侧双母接线、10KV侧单母分段接线。220kV出线6回其中备用2回,而双母接线使用*围是110220KV出线数为5回及以上时。满足主接线的要求。且具备供电可靠、调度灵活、扩建方便等特点。110kV出线10回其中备用2回,110kV侧有两回出线供给远方大型冶炼厂,其容量为80000kVA,其他作为一些地区变电所进线,其他地区变电所进线总负荷为10
13、0MVA。根据条件选择双母接线方式。10kV出线12回其中备用2回,10kV侧总负荷为35000kVA,、类用户占60%,最大一回出线负荷为2500kVA,最大负荷与最小负荷之比为0.65。选择单母分段接线方式。方案主接线图如下:图2-1主接线方案一方案二:方案进展综合比较:220KV侧双母带旁路接线,110KV侧双母接线、10KV侧单母分段接线。220kV出线6回其中备用2回,而由于本回路为重要负荷停电对其影响很大,因而选用双母带旁路接线方式。双母线带旁路母线,用旁路断路器替代检修中的回路断路器工作,使该回路不致停电。这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线的线路
14、回数较多,并且对供电可靠性有特殊需要的场合是十分必要的。主接线如以下列图:图2-2 主接线方案二现对两种方案比较如下:表2-1 主接线方案比较表方案工程方案一:220KV侧双母接线,110KV侧双母接线、10KV侧单母分段接线。方案二、220KV侧双母带旁路接线,110KV侧双母接线、10KV侧单母分段接线。可靠性1.220KV接线简单,设备本身故障率少;2.220KV故障时,停电时间较长。1.可靠性较高;2.有两台主变压器工作,保证了在变压器检修或故障时,不致使该侧不停电,提高了可靠性。灵活性1.220KV运行方式相对简单,灵活性差;2.各种电压级接线都便于扩建和开展。1.各电压级接线方式灵
15、活性都好;2.220KV电压级接线易于扩建和实现自动化。经济性设备相对少,投资小。1.设备相对多,投资较大;2.母线采用双母线带旁路,占地面增加。通过对两种主接线可靠性,灵活性和经济性的综合考虑,辨证统一,现确定第二方案为设计最终方案。第二章 主变压器的选择在发电厂和变电站中,用来向电力系统或用户输送功率的变压器,称为主变压器;用于两种电压等级之间交换功率的变压器,称为联络变压器;只供本所厂用的变压器,称为站所用变压器或自用变压器。本章是对变电站主变压器的选择。2.1 主变压器的选择原则1、主变容量一般按变电所建成后510年的规划负荷来进展选择,并适当考虑远期1020年的负荷开展。2、根据变电
16、所所带负荷的性质和电网构造来确定主变的容量。对于有重要负荷的变电所,应考虑一台主变停运时,其余变压器容量在计及过负荷能力后的允许时间内,保证用户的级和级负荷,对于一般变电所,当一台主变停运时,其他变压器容量应能保证全部负荷的70%80%。3、为了保证供电可靠性,变电所一般装设两台主变,有条件的应考虑设三台主变的可能性11。2.1.1 主变压器台数的选择1、对大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。2、对地区性孤立的一次变电所或大型工业专用变电所,在设计时应考虑装设三台主变压器的可能性。3、对于规划只装设两台主变压器的变电所,以便负荷开展时,更换变压
17、器的容量。2.1.2 主变压器容量的选择1主变压器容量一般按变电所建成后510年的规划负荷选择,适当考虑到远期1020年的负荷开展。对于城郊变电所,主变压器容量应与城市规相结合。2根据变电所所带负荷的性质和电网构造来确定主变压器的容量。对于有重要负荷的变电所,应考虑当一台主变压器停运时,其余变压器容量在计其过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对一般性变电所,当一台变压器停运时,其余变压器容量应能保证全部负荷的70%80%12。3同级电压的单台降压变压器容量的级别不宜太多。应从全网出发,推行系列化、标准化。3-12.1.3 主变压器型式的选择1.相数的选择 主变采用三相或单相,
18、主要考虑变压器的制造条件,可靠性要求及运输条件等因素。当不受运输条件限制时,在330kV及以下的变电所,均应选用三相变压器。2.绕组的选择在具有三种电压等级的变电站中,如通过主变压器各侧绕组的功率均到达该变压器的15%以上,或低压侧虽无负荷,但在变电站内需装设无功补偿设备时,主变压器宜采用三绕组变压器。根据设计要求,主变压器选用三绕组变压器。3. 用普通型还是自耦型在220KV及以上的变电所中,宜优先采用自耦变压器。因为自耦变压器与同容量的普通型变压器相比较,具有以下优点:A、消耗材料少、等价低、有功、无功损耗小、较率高。B、高中压线圈的自耦联系,阻抗小,对改善系统稳定性有一定作用。C、还可扩
19、大变压器极限制造容量,便利运输和安装。4.调压方式的选择对于220kV及以上的降压变压器,仅在电网电压可能有较大变化情况下,采用有载调压方式,一般不宜采用。当电力系统运行确有需要时,在降压变电所亦可装设单独的调压变压器或串联变压器。根据设计要求,本变电所采用有载调压方式。2.1.4 绕组数量和连接形式的选择具有三种电压等级的变电所,如各侧的功率均到达主变压器额定容量的15%以上,或低压侧虽无负荷,但需要装设无功补偿设备时,主变压器一般选用三绕组变压器。变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只要有丫和,高、中、低三侧绕组如何结合要根据具体工作来确
20、定。我国110KV及以上电压,变压器绕组多采用丫连接;35KV亦采用丫连接,其中性点多通过消弧线圈接地。35KV以下电压,变压器绕组多采用连接。由于35KV采用丫连接方式,与220、110系统的线电压相位角为0,这样当变压变比为220/110/35KV,高、中压为自耦连接时,否则就不能与现有35KV系统并网。因而就出现所谓三个或两个绕组全星接线的变压器,全国投运这类变压器约4050台。2.2 主变压器选择结果查?电力工程电气设备手册:电气一次局部?,选定变压器的容量为180MVA。由于升压变压器有两个电压等级,所以这里选择三绕组变压器,查?大型变压器技术数据?选定主变型号为:SFPS7-180
21、00/220。主要技术参数如下:额定容量:180000KVA额定电压:高压22022.5% ;中压121; 低压10.5KV连接组标号:YN/yn0/d11空载损耗:178(KW)阻抗电压%:高中:14.0;中低:7.0;上下:23.0空载电流%:0.7所以一次性选择两台SFPS7-180000/220型变压器为主变。第三章 无功功率补偿设计无功功率补偿装置的主要作用是:提高负载和系统的功率因数,减少设备的功率损耗,稳定电压,提高供电质量。在长距离输电中,提高系统输电稳定性和输电能力,平衡三相负载的有功和无功功率等。3.1无功功率补偿技术的现状目前,国内电网采用的电容补偿技术主要是集中补偿与就
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 220 变电站 电气 部分 设计 毕业论文
链接地址:https://www.31ppt.com/p-1087625.html