欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    绿色能源课件.ppt

    • 资源ID:7331431       资源大小:1.24MB        全文页数:64页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    绿色能源课件.ppt

    六、绿色能源,目录:绿色能源简介 生物质能源 锂电子电池 燃料电池,6.1绿色能源简介,绿色植物通过光合作用将太阳能转化并储存于体内的化学能。人们直接或加工利用这些化学能作为能源,代替煤、石油等不可再生的能源。在可持续发展的理念下,绿色能源体现了与环境友好相容的自然资源的开发利用原则。当前的绿色能源,6.1.1绿色能源及其分类,定义:绿色能源是指温室气体和污染物零排放或排放很少的能源,主要是新能源和可再生能源。两层含义:一是利用现代技术开发干净、无污染新能源,如太阳能、风能、潮汐能等;二是化害为利,同改善环境相结合,充分利用城市垃圾淤泥等废物中所蕴藏的能源,与此同时,大量普及自动化控制技术和设备提高能源利用率。,分类:绿色能源也称清洁能源,有狭义和广义两种概念。狭义的绿色能源是指可再生能源,如水能、生物能、太阳能、风能、地热能和海洋能。这些能源消耗之后可以恢复补充,很少产生污染。广义的绿色能源则包括在能源的生产、及其消费过程中,选用对生态环境低污染或无污染的能源,如天然气、清洁煤(将煤通过化学反应转变成煤气或“煤”油,通过高新技术严密控制的燃烧转变成电力)和核能等等。人们常常提到的绿色能源是指太阳能、氢能、风能等,但另一类绿色能源,就是绿色植物给我们提供的燃料,我们也管它叫做绿色能源,又叫生物能源或生物质能源。在绿色能源中,另一种资源是草类。,发展机遇及现状:大规模地开发利用可再生能源,大力鼓励可再生能源进入能源市场,已成为世界各国能源战略的重要组成部分风车中国经济高速发展,能源资源约束日益突出。这种情况下,大力发展可再生能源,是缓解能源瓶颈、促进中国经济发展的必然选择。新年伊始,可再生能源法正式实施,相关配套措施也将很快出台。这意味着,“十一五”开局,中国绿色能源产业将迎来一个前所未有的发展机遇。中国绿色能源资源丰富,开发利用潜力很大。据测算,在今后二三十年内,具备开发利用条件的可再生能源预计每年可达8亿吨标准煤。在绿色能源中,太阳能资源取之不尽,清洁安全,是最理想的可再生能源。风能的利用主要是发电,中国风力资源十分丰富。此外,中国生物质能利用也已起步。中国正进行从生物质能制取固体、液体燃料的研究和试验。,6.1.2绿色能源,可再生能源,是指从自然界获取的、可以 再生的非矿物能源,主要指风能、太阳能、生物质能、地热能和海洋能等。由于它来自自然,在使用过程中又很少对环境造成二次污染,因此被称之为绿色能源。也称之为可再生能源。,风能,风是地球上的一种自然现象,它是由太阳辐射热引起的。太阳照射到地球表面,地球表面各处受热不同,生温差,从而引起大气的对流运动形成风。据估计到达地球的太阳能中虽然只有大约2%转化为风能,但其总量仍是十分可观的。全球的风能约为2.74X109MW,其中可利用的风能为2X107MW,比地球上可开发利用的水能总量还要大10倍。风能是一种有巨大发展潜力的无污染可再生能源,特别是对沿海岛屿、边远山区,地广人稀的草原牧场,以及远离电网和近期内电网还难以达到的农村、边疆,作为解决生产和生活能源的一种可靠途径,有着十分重要的意义。即使在已开发国家,高效洁净的风能也日益受到重视。,太阳能,太阳是一个巨大、久远、无尽的能源,同时也是许多能源的来源。尽管太阳辐射到地球大气层的能量仅为其总辐射能量(约?3.751026W)的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。地球上的风能、水能、海洋温差能、波浪能和生物质能以及部分潮汐能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。太阳能既是一次能源,又是可再生能源。它的资源丰富,既可免费使用,又无需运输,对环境没有任何污染。但太阳能也有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。,生物能,生物质是指由光合作用而产生的各种有机体,生物能是太阳能以化学能形式贮存在生物中的一种能量形式,一种以生物质为载体的能量,它直接或间接地来源于植物的光合作用。在各种可再生能源中,生物质是独特的,它是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。生物能是第四大能源,生物质遍布世界各地,其蕴藏量极大。据估计地球上每年植物光合作用固定的碳达2x1011t,含能量达3x1021J,因此每年通过光合作用贮存在植物的枝、茎、叶中的太阳能,相当于全世界每年耗能量的10倍。世界上生物质资源数量庞大,形式繁多,其中包括薪柴,农林作物,尤其是为了生产能源而种植的能源作物,农业和林业残剩物,食品加工和林农业品加工的下脚料,城市固体废弃物,生活污水和水生植物等等。,地热能,地热能是来自地球深处的可再生热能,它起源于地球的熔融岩浆和放射性物质的衰变,其利用可分成地热发电和直接利用两大类。地热能的储量比目前人们所利用的总量多很多倍,而且集中分布在构造板块边缘一带、该区域也是火山和地震多发区。如果热量提取的速度不超过补充的速度,那么地热能便是可再生的。地热能在世界很多地区应用相当广泛,据估计,每年从地球内部传到地面的热能相当于100PWh。不过,地热能的分布相对来说比较分散,开发难度较大。,海洋能,海洋能指依附在海水中的可再生能源,海洋通过各种物理过程接收、储存和散发能量。这些能量以潮汐、波浪、温度差、盐度梯度、海流等形式存在于海洋之中,分述如下:潮汐与潮流能来源于月球、太阳引力,其他海洋能均来源于太阳辐射,海洋面积占地球总面积的71%,太阳到达地球的能量,大部分落在海洋上空和海水中,部分转化成各种形式的海洋能。海水温差能是热能,低纬度的海面水温较高,与深层冷水存在温度差,而储存着温差热能,其能量与温差的大小和水量成正比。潮汐、潮流,海流、波浪能都是机械能,潮汐能是地球旋转所产生的能量通过太阳和月亮的引力作用而传递给海洋的,并由长周期波储存的能量,潮汐的能量与潮差大小和潮量成正比;潮流、海流的能量与流速平方和通流量成正比;波浪能是一种在风的作用下产生的,并以位能和动能的形式由短周期波储存的机械能,波浪的能量与波高的平方和波动水域面积成正比。河口水域的海水盐度差能是化学能,入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透可生渗透压力,其能量与压力差和渗透流量成正比。因此各种能量涉及的物理过程开发技术及开发利用程度等方面存在很大的差异。,氢能,氢能是通过一定的方法利用其他能源制取的,不像煤、石油和天然气等可以直接从地下开采。在自然界中,氢已和氧结合成水,必须用热分解或电分解的方法把氢从水中分离出来。燃料电池即是将氢与氧直接通过电化学反应产生电与水,一个步骤就可发电,发电较传统方式有效率。商品化后,这样的发电系统不但适合一般家庭使用,其副产品所产生的热水,大约在摄氏40到60度间,相当适合家庭洗澡与厨房利用,一举两得。如果用煤、石油和天然气等燃烧所产生的热或所转换成的电支分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等于把无穷无尽的、分散的太阳能转变成了高度集中的干净能源了,其意义十分重大。,磁能,磁能泛指与磁相联系的能量,严格地说应指磁场能。在线圈中建立电流,要反抗线圈的自感电动势而做功,与这部分功相联系的能量叫做自感磁能。两个线圈之间存在互感作用,在两个线圈中分别建立电流,除了反抗线圈的自感电动势而做功外,还将反抗线圈的互感电动势而做功,与后者相联系的能量叫做互感磁能。在静磁情形,电流与磁场总是相伴存在的,因此,将磁能看成与电流联系起来还是储存在磁场中,效果完全相同。然而科学实践证明磁场是一种特殊形态的物质,它可以脱离电流而存在。变化的电场也能产生磁场,这种变化电场产生的磁场亦具有能量,其场能密度与静磁相同。在一般情形下,变化的电磁场以波的形式传播,传播过程中伴随着能量传递。,6.2 生物质能源,目前,生物质能技术的研究与开发已成为世界重大热门课题之一,受到世界各国政府与科学家的关注。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,其中生物质能源的开发利用占有相当的比重。中国是一个人口大国,又是一个经济迅速发展的国家,21世纪将面临着经济增长和环境保护的双重压力。因此改变能源生产和消费方式,开发利用生物质能等可再生的清洁能源资源对建立可持续的能源系统,促进国民经济发展和环境保护具有重大意义。开发利用生物质能对中国农村更具特殊意义。,6.2.1 生物质能源基础,生物质:生物质是指绿色植物通过光合作用直接产生或间接衍生的所有物质即为生物质。它包括植物、动物和微生物 如:植物,地球上储量约2亿亿吨,年再生速度1640吨。其主要成分为:淀粉(由葡萄糖经a-1,4化学键相连)和纤维素(由葡萄糖经b-1,4化学键相连),生物质中最值得利用的是木质纤维素,其优点是(1)由可降解的葡萄糖组成;(2)生物圈中最丰富的有机物。应用中的主要难点为:(1)多处于结晶态;(2)采用b-1,4化学键;(3)与木质素连结在一起。,生物质能:生物质能(biomass energy),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。地球上的生物质能资源较为丰富,而且是一种无害的能源。生物质能的分类:依据来源的不同,可以将适合于能源利用的生物质能分为林业资源、农业资源、生活污水和工业有机废水、城市固体废物和畜禽粪便等五大类。以下列举了几类生物质能源:,林业资源林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等。农业资源农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。能源植物泛指各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。,生活污水和工业有机废水 生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中出的废水等,其中都富含有机物。城市固体废物 城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。畜禽粪便 畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。沼气 沼气就是由生物质能转换的一种可燃气体,通常可以供农家用来烧饭、照明。,6.2.2生物质能的特性及利用,特性:1)可再生性生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;2)低污染性生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应;,3)广泛分布性缺乏煤炭的地域,可充分利用生物质能;4)生物质燃料总量十分丰富生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多。应用:沼气、压缩成型固体燃料、气化生产燃气、气化发电、生产燃料酒精、热裂解生产生物柴油等。生物质能的利用:生物质能的利用主要有直接燃烧、热化学转换和生物化学转换等3种途径。,生物质的直接燃烧在今后相当长的时间内仍将是我国生物质能利用的主要方式。生物质的热化学转换是指在一定的温度和条件下,使生物质汽化、炭化、热解和催化液化,以生产气态燃料、液态燃料和化学物质的技术。生物质的生物化学转换包括有 生物质-沼气转换和生物质-乙醇转换等。,6.2.3生物质液体燃料,生物质能资源包括农作物秸秆和农业加工剩余物、薪材及林业加工剩余物、禽畜粪便、工业有机废水和废渣、城市生活垃圾和能源植物,可转换为多种终端能源如电力、气体燃料、固体燃料和液体燃料,其中受到最多关注的是生物质液体燃料(生物燃油),产业驱动因素:为了保障石油的安全,世界不少国家已经开始发展生物燃油产业(包括生物燃油加工业以及其相关产业,如能源农业和能源林业)。能源农林业的大规模发展可以有效地绿化荒山荒地、减轻土壤侵蚀和水土流失。大量使用生物燃油对中国大气环境的保护和改善也有着突出的意义:与化石燃料相比,生物燃油的使用很少产生NOx 和SOx 等大气污染物;由于生物质CO2的吸收和排放在自然界形成碳循环,其能源利用导致的CO2 排放远低于常规能源。建设从能源农林业到生物燃油加工业的生物燃油产业链可以成为中国解决“三农”问题的一个有力手段。,6.2.3生物质固体燃料,定义:生物质固体燃料是指利用生物质压块技术将废弃农作物秸秆、花生壳、树枝树皮、木屑等压制成型而制成的。优点:热值高,燃点低,燃尽率高,排放出的气体对大气无污染。下面是某企业花生壳生物质燃料压块的主要技术参数:生物质燃料-花生壳压块的主要技术参数:密度:900-1300kg/m3 热值:3700左右Kcal/kg,灰分:5-20%水分:12%成品尺寸:3232(30-80)生物质燃料-花生壳压块燃烧后的废气排放:CO2零排放NO2微量SO2低于46.2mg/m3(国家标准:900mg/m3)粉尘低于70mg/m3(国家标准:200mg/m3)生物质固体成型设备,生物质固体成型的工艺流程,6.2.4生物质能的气化,定义:生物质气化是指将固体或液体燃料转化为气体燃料的热化学过程,此过程中气化装置里游离氧或结合氧与燃料中的碳进行热化学反应生成可燃气体。气化原理:,生物质气化主要是在气化炉中完成的,目前已使用的气化炉有上吸式、下吸式、敞口式和流化床。下面以上吸式气化炉为例介绍下气化原理:,指标:气化效率是指生物质气化后生成气体的总热量与气化原料的总热量之比。它是衡量气化过程的主要指标。影响生物质气化技术应用的关键问题:a.生物质收集与预处理;b.废水二次污染。,6.3锂离子电池,锂离子电池是以锂离子嵌入化合物为正极材料的电池的总称。,6.3.1锂离子电池基础,定义:锂离子电池是一种充电电池,一般采用含有锂元素的材料作为电极,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。锂离子电池工作原理图组成部分:(1)正极活性物质一般为锰酸锂或者钴酸锂(2)隔膜一种特殊的复合膜,可以让离子通过,但却是电子的绝缘体(3)负极活性物质为石墨,或近似石墨结构的碳(4)有机电解液溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液(5)电池外壳也是电池的正负极引出端 注意:锂离子电池不同于下面两种电池:(1)锂电池:存在锂单质。(2)锂离子聚合物电池:用多聚物取代液态有机溶剂。,6.3.2锂离子电池的发展历史,早期的锂电池锂离子电池(Li-ion Batteries)是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电。这种电池也可以充电,但循环性能不好,在充放电循环过程中,容易形成锂结晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。,发展阶段:1970年代埃克森的M.S.Whittingham采用硫化钛作为正极材料,金属锂作为负极材料,制成首个锂电池。1982年伊利诺伊理工大学(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman发现锂离子具有嵌入石墨的特性因此人们尝试利用锂离子嵌入石墨的特性制作充电电池。首个可用的锂离子石墨电极由贝尔实验室试制成功。1983年M.Thackeray、J.Goodenough等人发 现锰尖晶石是优良的正极材料,具有低价、稳定和优良的导电、导锂性能。其分解温度高,且氧化性远低于钴酸锂,即使出现短路、过充电,也能够避免了燃烧、爆炸的危险。1989年,A.Manthiram和J.Goodenough发现采用聚合阴离子的正极将产生更高的电压。1991年索尼公司发布首个商用锂离子电池。1996年Padhi和Goodenough发现具有橄榄石结构的磷酸盐,如磷酸铁锂(LiFePO4),比传统的正极材料更具安全性,尤其耐高温,耐过充电性能远超过传统锂离子电池材料。,6.3.3工作原理,锂离子电池也由三个部分组成:正极、负极和电解质。电极材料都是锂离子可以嵌入(插入)/脱嵌(脱插)的。正极 正极材料:可选的正极材料很多,目前主流产品多采用锂铁磷酸盐。下面是关于不同的正极材料的对照幻灯片 39正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。充电时:LiFePO?Li1-xFePO?+xLi+xe 放电时:Li1-xFePO?+xLi+xe LiFePO?负极负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。负极反应:放电时锂离子脱插,充电时锂离子嵌入。充电时:xLi+xe+6C LixC6 放电时:LixC6 xLi+xe+6C,电解质溶液:溶质:常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF?)。溶剂:由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜(solid electrolyte interphase,SEI)导致电极钝化。有机溶剂还带来易燃、易爆等安全性问题。,工作状态和效率:锂离子电池能量密度大,平均输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-2060。循环性能优越、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。,作用机理:锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是以锂离子嵌入化合物为正极材料的电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。,6.3.4锂离子电池的特点及分类,主要优点:1)电压高2)比能量大3)循环寿命长4)安全性能好5)自放电小 6)可快速充放电主要缺点:衰老、回收率、不耐受过充、不耐受过放、需要多重保护机制、保护电路、排气孔、隔膜,主要种类:1.锂二氧化锰电池(Li-MnO?)锂二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率10%);工作温度范围20+60。,2.锂亚硫酰氯电池(Li-SOCl?)该类电池的比能量是所有商业化电池中最高的,放电电压特别平稳,一般用于不能经常维护的电子设备、仪器上,应用领域很窄。3.锂离子电池(Li-ion)根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。,6.3.5锂离子电池的新发展,聚合物锂离子电池:聚合物锂离子电池是在液态锂离子电池基础上发展起来的,以导电材料为正极,碳材料为负极,电解质采用固态或凝胶态有机导电膜组成,并采用铝塑膜做外包装的最新一代可充锂离子电池。由于性能的更加稳定,因此它也被视为液态锂离子电池的更新换代产品。目前很多企业都在开发这种新型电池。动力锂离子电池:动力锂离子电池:严格来说,动力锂离子电池是指容量在3AH以上的锂离子电池,目前则泛指能够通过放电给设备、器械、模型、车辆等驱动的锂离子电池,由于使用对象的不同,电池的容量可能达不到单位AH的级别。动力锂离子电池分高容量和高功率两种类型。高容量电池可用于电动工具、自行车、滑板车、矿灯、医疗器械等;高功率电池主要用于混合动力汽车及其它需要大电流充放电的场合。根据内部材料的不同,动力锂离子电池相应地分为,液态动力锂离子电池和聚合物理离子动力电池两种,统称为动力锂离子电池。高性能锂电池:为了突破传统锂电池的储电瓶颈,研制一种能在很小的储电单元内储存更多电力的全新铁碳储电材料。但是此前这种材料的明显缺点是充电周期不稳定,在电池多次充放电后储电能力明显下降。为此,改用一种新的合成方法。他们用几种原始材料与一种锂盐混合并加热,由此生成了一种带有含碳纳米管的全新纳米结构材料。这种方法在纳米尺度材料上一举创建了储电单元和导电电路。目前这种稳定的铁碳材料的储电能力已达到现有储电材料的两倍,而且生产工艺简单,成本较低,而其高性能可以保持很长时间。领导这项研究的马克西米利安菲希特纳博士说,如果研能够充分开发这种新材料的潜力,将来可以使锂离子电池的储电密度提高5倍。,6.4燃料电池,历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有3335%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。,6.4.1燃料电池的基础,定义:燃料电池(FuelCell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。,燃料电池的特点:(1)能量效率高他直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。目前燃料电池的系统的燃料电能转换效率在45%60%,而火力发电和核电的效率大约在30%40%。(2)环境保护性好 有害气体SOx、NOx及噪音排放都很低,CO2排放因能量转换效率高而大幅度降低,无机械振动。(3)燃料适用范围广。(4)积木化强规模及安装地点灵活,燃料电池电站占地面积小,建设周期短,电站功率可根据需要由电池堆组装,十分方便。燃料电池无论作为集中电站还是分布式电,或是作为小区、工厂、大型建筑的独立电站都非常合适。(5)负荷响应快,运行质量高燃料电池在数秒钟内就可以从最低功率变换到额定功率,而且电厂离负荷可以很近,从而改善了地区频率偏移和电压波动,降低了现有变电设备和电流载波容量,减少了输变线路投资和线路损失。,能量变化:为了利用煤或者石油这样的燃料来发电,必须先燃烧煤或者石油。它们燃烧时产生的能量可以对水加热而使之变成蒸汽,蒸汽则可以用来使涡轮发电机在磁场中旋转。这样就产生了电流。换句话说,我们是把燃料的化学能转变为热能,然后把热能转换为电能。在这种双转换的过程中,许多原来的化学能浪费掉了。然而,燃料非常便宜,虽有这种浪费,也不妨碍我们生产大量的电力,而无需昂贵的费用。还有可能把化学能直接转换为电能,而无需先转换为热能。为此,我们必须使用电池。这种电池由一种或多种化学溶液组成,其中插入两根称为电极的金属棒。每一电极上都进行特殊的化学反应,电子不是被释出就是被吸收。,历史:1839年英国的Grove发明了燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦讲演厅的照明灯。20世纪50年代,英国剑桥大学的Bacon用高压氢氧制成了具有实用功率水平的燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。,分类:依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。,6.4.2质子交换膜燃料电池,燃料电池本质是水电解的“逆”装置,主要由3 部分组成,即阳极、阴极、电解质,如图13。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,用来加速电极上发生的电化学反应。两极之间是电解质。,定义:质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC,也叫固体聚合物燃料电池)是一种低温燃料电池,由于其电解质是由质子(H+)导电聚合物构成而得其名。组成:单电池由阳极、阴极和质子交换膜组成。阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极,工作原理:(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1 个氢分子解离为2 个氢质子,并释放出2 个电子,阳极反应为:H22H+2e。(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,在阴极催化剂的作用下,氧分子和氢离子与通过外电路到达阴极的电子发生反应生成水,阴极反应为:1/2O2+2H+2eH2O总的化学反应为:H2+1/2O2H2O,优点:发电过程不涉及氢氧燃烧,因而不受卡诺循环的限制,能量转换率高;发电时不产生污染;发电单元模块化;可靠性高;组装和维修都很方便;工作时也没有噪音。综上所述,质子交换膜燃料电池电源是一种清洁、高效的绿色环保电源。应用领域:便携式电源、机动车电源和中、小型发电系统,定义:固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能直接转化成电能的全固态化学发电装置。主要组成部分:(1)电解质(2)阳极或燃料极(3)阴极或空气极,6.4.3固体氧化物燃料电池,电池反应:,优点:(1)广泛采用陶瓷材料作电解质、阴极和阳极,具有全固态结构,无材料腐蚀和电解液腐蚀等问题;(2)较高的电流密度和功率密度;(3)燃料适用范围广;(4)能提供高质余热,实现热电联产;(5)陶瓷电解质要求中、高温运行(6001000),加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。,6.4.4碱性燃料电池,定义:碱性燃料电池(Alkaline Fuel Cell,AFC)是以碱性溶液为电解质,将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。反应原理:阳极反应:H2+2OH-2H2O+2e-标准电极电位为-0.828V 阴极反应:1/2O2+H2O+2e-2OH-标准电极电位为0.401V 总反应:1/2O2+H2 H2O理论电动势为0.401-(-0.828)=-1.229 催化剂:主要用贵金属铂、钯、金、银和过渡金属镍、钴、锰等。AFC的特点:优点:(1)效率高(2)可以用非铂催化剂(3)可以采用镍板做双极板缺点:(1)易与CO2生成K2CO3、Na2CO3沉淀,严重影响电池性能(2)电池的水平衡问题很复杂,影响电池的稳定性,6.4.5磷酸型燃料电池,定义:磷酸燃料电池(Phosphoric Acid Fuel Cell,PAFC)是以浓磷酸为电 解质,以贵金属催化的气体扩散电极为正、负电极的中温型燃料电池。反应原理:阳极反应:H2+2e-2H+阴极反应:1/2O2+2H+H2O+2e-总反应:1/2O2+H2 H2OPAFC的特点:PAFC作为一种中低温型(工作温度180-210)燃料电池,不但具有发电效率高、清洁、适应多样燃料、无噪音、运转费低、设置场所限制少、大气压运转容易操作、安全性优良、部分负荷特性好等特点,而且还可以热水形式回收大部分热量。,6.4.6熔融碳酸盐燃料电池,定义:熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell,MCFC)是第二代燃料电池,由于其电解质是一种存在于偏铝酸锂(LiAlO2)陶瓷基膜里的熔融碱金属碳酸盐混合物而得其名。组成:熔融碳酸盐燃料电池是由多孔陶瓷阴极、多孔陶瓷电解质隔膜、多孔金属阳极、金属极板构成的燃料电池。,工作原理:电解质是熔融态碳酸盐,通常是锂和钾,或锂和 钠金属碳酸盐的二元混合物。反应原理示意图如下:阴极:O2+2CO2+4e-2CO32-阳极:2H2+2CO32-2CO2+2H2O+4e总反应:O22H2 2H2O优点:熔融碳酸盐燃料电池是一种高温电池(600700),具有效率高(高于40%)、噪音低、无污染、燃料多样化(氢气、煤气、天然气和生物燃料等)、余热利用价值高和电池构造材料价廉等诸多优点,是未来的绿色电站。,不同的正极材料对照:,

    注意事项

    本文(绿色能源课件.ppt)为本站会员(小pp老弟)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开