计算题答案.docx
笫一章热力学练习题答案四、计售与证明题答案:(说明:也可用循环关系式来证明)2.解:(1)A-B是恒容过程Q):B-C是绝热向真空膨胀过程(6);CfD是恒压冷却过程(。)。1×8.314×298.15101.325=298.15K,a=101.325kPa=24.46dm31×8.314×373.1524.46因为BfC是绝热向真空膨胀"=373.15K,K=K=24.46dm3=126.834kPa所以:Q=0'W=0*Ub=O即为恒温向真空膨胀过程Tc=373.15K,Vc=2Vb=48.92dm3nRTc1×8.314×373.15/zl川Dpc=63.417kPaVc48.92Tn=298.15K,R=63.417kPanRTD1×8.314×298.15m.3Vn=39.09CirnPD63.417总变化量Q=Qa+Qb+Q,=nCv-Ta)+0+11Cpm(d-Tc)3S=-/?x(373.15-298.15)+-/?x(298.15-373.15)=-623.55JW=Wa-Wh+Wc=0+0-Pd(Vd-Vc)=-R(Td-Tc)=-8.314×(298.15-373.15)=623.55JAU=hCvJtd-Ta)=0,H=hCpJtd-Ta)=0解此题关键在于会画出过程状态图,知道和,对于理想气体只是7的函数,同时掌握绝热过程中的不同公式的运用,在计算不可逆绝热过程的终态温度时不能用绝热可逆过程方程,但只要是绝热过程,AU=。.则总是成立。3,解:2A1+35(g)AlQ6(5)=(1)+3X(2)+6X(3)-(4)f"m=-1003.156+3×(-184.096)+6×(-72.446)-(-643.039)=-1347.081kJmol4 .解:Pl=7;=273K=11.2dm3_呻1x8.314x273,pi2×101.325d=PM?=2X101325X(11.2X10.)2=25.42Pam6(25.42,k15x101325;=4.09dm3P?=15p/、依const<Pi>=P2V2nR=748KQ=dU-V=CvdT+pdV=CvdT+/V:.Q=Cv(T2-T-const×=-×8.314×(748-273)-25.42×!r!r=1978J2v,14.09x10-311.2×10JC=1978748-273=4.16JK,5 .解:设计下列过程:dr="dp=(1.14+8.65xl("pe)切,积分可得:-298.15=1.14×(1-3)+1×8.65×IO-3×(12-32)=-2.3146T=298.15-2.3146=295.835KH=H1+W2=W2=p=Cpm(T2-V)=36.6×(298.15-295.835)=84.729Jt=7-(pV)=84.729-(101.325×24-3×101.325X7.9)=54.3J6 .解:(1)以nmol空气(体积P)与箱内空间匕共同组成体系,始态:%=298,/+%,p,PV=RRn(真空不能作环境或体系)终态:T=?,%,p,pV。=nRT绝热过程,Q=O,卜U=趴体积功:W=-pV=-p(V0-V-V0)=pV=11RTq7T=-7=1.4×298=417.2K101.325×10RT8.314×417.2=0.292lmol,Q=OU=ZiCvm(T-Ti)=0.2921××8.314×(417.2-298)=723.7JW=AU=723.7J7=wCpm(7,-7i)=0.2921×-×8.314×(417.2-298)=1013.2JT2P2V2T10.63×2×273-1.-1.=1/ZIkPM2×1P2=Pl9=2XC=O637 .解:(1)绝热可逆过程,3Qi=0,MJx=nCvm(T2-7,1)=l××(172-273)=-1259.6J吗=5=-1259.6J,H1=7Cpm(T2-T1)=l×-×(172-273)=-2099.3JXU2=t=1259.6J第=梯形面积Yv,OAQV2.63”2.63x8.314x2731(Pl÷P2V2-V1J=-X2.63PXK=XnRTi=1492.3JQ2=i2-W2=1259.6-14923=-232.7J循环过程:=0,H=0,=1+2=-232.71.W=-Q=232.7JCzRTx8.314×298S3/?.=2p,Vm1=1.=12.23dm8 .解:先求b,02x101.325,代入p/p$=0.%(dm3mo1.)+b即2=0.1x12.23+6,所以b=0.777n2=2nl=24.46dm3,p2=(0.1×24.46+0.777)p$=3.223S=-101.325×(.O5×(24.462-12.232)+0.777X12.23)=-3.236kJf½n,f24.46z0W二(:-pdVm=J1223-(0.ln+0.777)/叫“T='2n.2'PVm,13.233×2×2982二963KVb=20dm3,l×8.314×10(X)20=415.7kPaVc=20dm3,因为BfC是等容过程,所以又因为CfA是绝热可逆过程:"V'=常数Pc=PbTc"JC=PA阳=83T裁=125.42kPaTC=4匹于是PB1000x125.42415.7=301.7Ku="Qm(m)=TRX(963-298)=8.29kJzV=wC/Am(7-7)=|/?x(963-298)=13.82kJQ=AU-W=8.29+3.236=11.53kJ9 .解:(1)如右图.(2)TA=100OK,V=Idm3nRTAl×8.314×1000o,1.1dPA=8314kPaYA1因为A-B是恒温可逆过程,所以=1000(3)因为A-B是恒温可逆过程,所以对理想气体:AU】=°,AH=°QIf=瓯24.9IkJ又因为B-C是恒容过程,所以卬2=°2=Q2=Cvm(7i3-7)=-×(301.7-100O)=-14.5IkJ2=(2+Vb(pc-pB)=-14510÷20×(125.42-415.7)=-20.32kJ7W2=z7Cpm(7-7)=-×(301.7-10)=-20.32kJ或2因为CfA是绝热可逆过程,所以。3=°3=IV3=nCv,m(7-,)=I/?x(1000-301.7)=14.51kJH3=nCpm(7-7)=?×(1000-301.7)=20.32kJ(4)对此循环的24.91-14.5124.91=41.75%T,-Tx对同样高低温热源的卡诺循环:,2_7_=41.75=0.598100O检查是否符合对易关系:左边右边,所以6。不具有全微分性质,。不是状态函数。所以C69.83从本题中得知对卡诺循环来说,其热机的效率只与两个热源的温度有关,而与工作物质的本性无关。在同样的两个高低温热源之间工作的卡诺热机和任何其它热机比较,以卡诺热机的效率最大。笫二章热力学第二定律练习题答案四、计算及证明题答案:1 .证明:将d代入第一定律表达式中:2 .证明:由dU=TdS-PdV恒温下同除:0uav=(sav)1.P对于理想气体(auav)r=o(asav)-p=o,则gsav)=p4.证明:(1)由于内能是状态函数,所以:卜&=YA"=Q+咒.Q,+医=(Q+附+(。+照),即Q1.g+。)=(#;+险一代由图上可知:(所+的一掰=解一感=AABC的面积O:.Q1.(Q+Q)O,0WQ+。(2)由公式:AS3=Cpln今J+Aln5=CpIn设C点温度为r,S1+52=CpIn工(在等压下),(在恒容下)/rT、(rT、(T、=CIn%-RinZC铿B:2=卫'ITJITPJ=CzJnj4+Rlnj旦或:7;=-;T=处,p2)1.成几R:.AS=5+AS5.解:(1)等温过程:bU=Mf=0,ZQ=-W=nRTn"=1x8.314x298xIn5=3987.5J;W=-3987.5JP2JS=-=39875=13.38JKl,A=G=-3987.5JT298(2)=,=0,Q=-W=PRM=P2与一多=Rdl上2PJ=8.314×298×(l-0.2)=1982JNS=HRInf=13.38JK1,G=A=-3987.5JVPi)H2=-,T2-'=298×5=156.5K3AU=nCvmT=5RX(156.5-298)=-1765J,Q=OH=nCpmAT=IRX(156.5-298)=-2961J,W=AU=-1765JAS=0,S2=,(298K,5P,=S:(298K)-Rln(a=126-Rln5=112.6JKP2)F=(-S(-7;)=-1765-112.6×(156.5-298)=14168J(4)AG=AH-S亿-7;)=-2941-112.6x(156.5-298)=12992JQ=O,AU=W,3&(十一7O=一2化一匕)=一,2(等一半)=一氏(弓一7I彳)R(T2-298)=-/?7;-298×IJ,T5=202.6KAU=nCvm(-7j)=?×(202.6-298)=-1990JW=U=-1990JH=Cpm(4-7;)=IRX(202.6-298)=-1983JS=nCnmlnS+Rln且=5.36JKTZMnIp2JE=II2.6JK”,52=51÷5=112.6+5.36=118JK,F=t-(S2-S1TJ)=-1190-(118×202.6-112.6×298)=8454JG=7-(S27;-S1T;)=-1983-(118×202.6-112.6×298)=7661J6.解:途经计算:T=0,设计如图,按1.211RTIn五=8.314×373×ln-I4=40670J,Q:=一熙=(“2Jl°5J=21495J睨=一)(匕一份=pK=-,7,=-3101J,Wt=-2149.5J0=Q+Q=40670+2149.5=42819.5J,*=Ifi+W2=-3101-2149.5=-5250.5JA=0+#=42819.5-5250.5=37569JA"=0,=A"=40670J,向真空膨胀:V=Q,Q=Ar=37569J4067O1.IM(1)+RlnAS=S+AS=373l0.5j=109.03+5.76=114.8JK-'AG=AZZ-TiAS=40670-373×114.8=-2150.4JF=A+TbS=37569-373X114.8=-5251.4J7.解:Pb+Cu(Ac)2-*Pb(Ac)2+Cu,液相反应,p、KP均不变。/f=-91838.8J,Q=213635.0J,网体积功)=0,F=#'XU=0+/=213635-91838.8=121796.2JQrA,=A+A初。=121796.2JAS=T=213635/298=716.9JKAF=AU-TAS=-91838.8J,G=-91838.8JnRT2x8.314x283.2%初态:p9心Th,1.013×105=0.04649m1×8.314×293.21.013×1050.02406m3终态:关键是求终态温度,绝热,刚性,Ar=OHCQ,m(He)(Ti-c)+2Qm(H2)×(7i-ThJ=O即:2X1.5RX(E283.2)=1X2.5*×(293.2为,Tz=287.7KV2=Vtie+"也=0.04649+0.02406=0.07055m,He(0.04649m3,283.2K)(0.07055m,287.7K)H2(0.02406m,293.2K)-(0.07055m,287.7K)Shc=?CVm(He)ln所以:+RInl½J=2×1.5×8.314×ln287.7283.2÷2×8.314×ln0.070550.04649=7.328JKlEH5o=8.55OJK”同理:.AS=5hc+=I328+8.550=15.88JK9.解:AS=5i+AS+AS=75.4×AG=AZ/-7AS=-5648.4+2636032273+37.7X/=+"+A"=(75.4X10)-6032-(37.7×10)=-5648.4J出273=-20.66JK×(-20.66)=-214.82JAG=AG=RT×=O.09824,PPS=1.lO3210.解:ln包G214.82一3.56JK-1pJ=RT=263×8.314Cp=65.69-2×26.78-0.5X31.38=A'=/AC7+Const=-3.657+Const,V7,=298K时,=-30585J代入,求得:Const=-29524,-3.65729524,代入吉一赫公式,G1fS233.65+29524d6691积分,823298J2982应=一10836g+66§1=30.55,G2=25143J8232982恒温恒压下,AG>0,反应不能自发进行,因此不是形成AgJ)所致。=-,T2=1f-Z=298x(0.产=576K11 .解:550=0,V=A"=n6,n(-7I)=10X2RX(576-298)=57.8kJ7A"=57.8kJ,ZH=nQ(冕一方)=10×2RX(576-298)=80.8kJAS=O,G=A夕一$,蛔A7=80.910X130.59X(576-298)X103=-282.IkJA4=A-SA7=-305.2kJ12 .解:这类题目非常典型,计算时可把热力学量分为两类:一类是状态函数的变化,包括、从AS、£计算时无需考虑实际过程:另一类是过程量,包括0、机不同的过程有不同的数值。先求状态函数的变化,状态变化为:(0,兀外一(R,以为J1_丁司S=CIMdT(乳yflnu所以:乂A"=AU+NpV)=AU+(p2V2-PlM)=-2±-lW½A=t-75=-J-|-/?nn|-也vjvjAG=A“-TAsl=-RTlnP-M½JIvJ再求过程量,此时考虑实际过程恒温可逆:Q=TS=RTin上对于恒温可逆过程:VvI)第三章多组分(溶液)练习题答案四、主观题答案:V2=II=32.280+18.22疝2+o.O222w1.解:-I一打时dK=(32.280+18.22d*+Q222m)dm进行不定积分:V=32.28Om+12.1472+0.0111/+const当初=0,const=V=(1000/18)X17.96=998P=998+32.280m+12.147/"+0.0111由集合公式:V=nl¼+feK=(1000/18)匕+32.280m+18.22/+0.0222iff(1000/18)K=998+32.280/»+12.147#2+0.0111万(32.280勿+18.22+0.0222")=998-6.073-"-0.0111/:.K=17.96-OjO93.998×10W(cm3)z、R7+-2.解制,di"一。对于纯实际气体:W温虾变/WRT或者:g=ln"=Inp-Inp+ln(1+ap)-ln(l+ap)当p*-*O时,1+aJ-1,fJ故ln,=Inp+ln(l+ap)=lnp(l+op),得:f=p(l+ap)3 .解:(D以XB=I符合亨利定律的假想态为标准态,则两溶液中N的化学势为:/、(甲)=/?+Rnnq=/+Rrin匹IKJ(乙)=/J+Rnn2=e+RTln+)或者用液气平衡表示液相化学势:W甲)=zg)=解(r)+m喙Pb(乙)=B(g)(T)+RTln请6=2(乙)一(甲)=2尺7111卫=2x8.314x298XIne180J=-5382J(乙)=(g)+m(2)由液态与气态平衡关系:A(NH3,乙)="(NH3,g)则:/z,IAG=2(乙)一$(g)=2e11n牛=2×8.314×298×In=-16538JP7604 .解:(1)以纯溟为标准态,用拉乌尔定律:P20319n11l.?00U2ay=-4-=0.0112,/=-=2p28.40x20.00599(2)以假想态为标准态,用亨利定律:pi=K.忿P20.319一天7-53.86=0.00592,a2_0.00592E-000599=0.988X(乙酹)=一,3/46=0oi2O;M水)=1一0.0120=0.988解:3/46+97/18V7P=P*(水)+4工(乙)=0.901X0.988+MXO.0120=1.OPKn=9.15ft,当彳(乙)=0.02,(水)=0.98时夕(乙)=9.15X0.02=0.183炉,p(水)=0.902X0.98=0.883炉以=±_=_dA=04Pa+PbPaxa+Pb(1-a)05xa÷12(1-xa)解得照=0.6154,Xh=0.3846§按A的压力计算:PX0.4=入Xk=0.5P×0.6154,:.P=0.7693炉(2)正常沸点P=P*(1-Ab)+二XB=/0.5(I-JVb)+1.2*=1解之,厢=0.7143气相中:)B-p1.P*1.2x0.7143=0.85717 .解答:(1)首先考虑在两相达平衡时,液体A在两相中的化学势相等:纯A=A(左溶液田)(A相中)a=a+RTln%(水相中)可解得:RTna=0即a=1(2)由题给条件:A的标准态为纯液体,故应选用摩尔分数浓度;(3)将质量百分数换算为摩尔分数浓度:xa=33/67=0Q40,a="=2586.7/18+13.3/60XA(太大,应选假想态为标准态)8 .解:先求亨利常数。在CHC1.中,AI1(CH1CI)=pc"/c=0.53p"1=0.53p"在水中,¢(末电离)=1X(1-13%)=0.87moldm-3,<(w)=pc/c=0.70P/0.87=0.8046P容器中,气相3升,水中(w)=0.2mol,¢(末)=0.2X(1-25%)=0.15moldm-3气相中SOz压力p(SO2)=M(W)C(末)c=0.8046PX0.15=0.1207炉(气)=VRT=0.1207X101.325X3/(8.314X298)=0.0148molCHCIb相中,C(QhCD=WM(CIhCl)=0.1207/0.53=0.2277moldm'j=0.2+0.0148+0.2277=0.4425mol9,解:1."m/O(说明:在没有用稀溶液近似前,理想稀溶液的公式:-RThl"A="Kn,A)式中:Vm.H2O=18×1,043×10-=1.8774×10-2dmT=373.15KInq=-0.2007-K,h2o_-33226x1.874×102RT-8.314×373.15则:=0.8178=0.9175所以:%=幺=0.8915100/18X|-100/18+171/342笫四章化学平衡练习题答案四、计算及证明题答案:fa(rGm)l1.解:(1)根据吉布斯亥姆霍兹方程,有lArHmT2ArG:3.47×IO4TT-+26.4InT÷45.23.47×IO426.4T2-+T2T用:(Jmo,)=-3.47×104-26.4(TK)(AGC(=exp-=exp-232000-160×8008.314×8(X);=1.62×10"7(573K)=-3.47×104+26.4×573XIn573+45.2×573=87271Jmo,=1.IlxlO8(87271=expI8.314×573X(jKlmo,)=-l=-71.6-2641n(TK)I)p司(573K)=-71.6-26.4111573=-239JK1mo,;当7=800K时2解.由rGz=232000-160T=-RTInKP=I.62X10“800K时,ZnO(三)+(g)=Zn(I)+H2O(g),Zn(I)与Zn(g)相平衡,化学势相等,l'p16164_Ig%=÷5.22rrQfY)液态Zn的蒸气压为()P(Zn)=3.27X10"产331.3Pa;根据化学反应方程式,得fP=1.62X1OV於=p(Zn)p(II2O)/p(H2)所以p(H2)p(H20)=2.02X10'则”(H2)Aj(H2O)=2.02×10i3.解:由反应:平衡时,p(0)=6.0528kPa由反应(1):平衡时,4(1)=p(C2)p(H2O)=P=×3.9992=3.998kPa?共同平衡时:P(H2O)p(CO2)=KM6.0528×p(CQ>)=3.998P(CO2)=0.6605kPa平衡压力p=夕(Ca)+p(H2O)=6.7133kPaXp$=10.1325kPap(分解)=3p0,=30.3975kPaPC=-p=33.8kPadh,i=2po=67.6kPa分解温度下H分解)",°23""F02(3)在标准状态下,各物质的压力均为炉,P=Po2+P=2p=202.65kPa5 .解:H2S(g)+2g(三)=Ag2S(三)+H2(g),AG:=-40.26+33.02=-7.24kJmo,Gnl=G+RTInQa=-7240+8.314×298Inf也-1=-7240<0mm“(5p)所以在恒温恒压下,Ag会被腐蚀。(2)设不发生腐蚀时HzS(g)的摩尔分数为X:-7240+8.314×298Inf-!>0x<0.05107=5.107%6 .解:(1)Kf,=p(C02)p(H20)=T1=303K,0(l)=X0.0082'=1.681×IOTE=383K,心(2)=×1.64812=0.6791由等压式:lnft=A/ABln(l.681×IOT)=A/303+B与InO.6791=A/383+B解得:A=-15386,B=39.79ln0=-15386/7+39.79(2)夕=,人。=%XWf=0.25,代入InO.25=-15386/7+39.79T=373.2K(3) A-=-8.314×(-15385)=127.9kjmol,(4)通入惰性气体,平衡向右移动。7 .解:PCls(g)=PCI.(g)+C1.(g)Ay=I1oaa,=1+a,p="m=XjU-a2Jp)1-0.523Po%=(l+O.5)RT,Rr=IPV=(I+j?T=V=2dm3,p(1)设离解度为环,Y=K与即:IPj?=普l+%3l-a123f整理得:a;+2a;-I=O1x2&z:-5RT2/3,一整理得:a;+%-1=0,P3V3_2×1仃第',"2"所以3+1乂片+%-I)=0,解得:a,=0.618,离解度增加ni=1÷a2÷n设离解度为。2,Ke=K(%3)2J'5(l-a2)33解得%=0.618,离解度增加nj=1+a3+n(3)设离解度为3,Ke=Kj©=(%,2,整理得:a;+%-1=0,(PJ(1-%)/33解得=05,离解度不变(4)设离解度为),PCl5(g)=PCl3(g)+Cl2(g)1aia叫+yni=+a4+y=-=3,y=2-a4,p=2p&+y、Ke=Kj与J-3U:一九2pV(J4)/33解得出=0.2,离解度减少8.解:(1)T1=457.4Ke=0.36T=298.15KrH0m=61.5×IO3J/mol16.72dTrH%(T)=rHm(298)+j298=61.5×lO3+16.72(T-298)=5.6515×104÷16.72TdlnK0=冏RT2dT5.6515×104RT2dT+16.72RTdTInK0-56515+=RT16.72RInT+/T=457,4K=0.36代入常数1=1.522InK0=-6798/T+2.011lnT÷1.522(2)T=600KlnK=-6798/600+2.0111.n600+1.522=3.056K=21.249.解:(1)平衡时CaCQJ的摩尔数=11.10-3.98=7.12mol712X=:=0.559熔融物中37.12+5.62(2)CaCO3(I)=CaO(三)+CO2(g),a=3.5,=-,71naAGni=PcO2+CaO-ZzCaCO3=其中=能2+RTln绛,co5=44。3+RTInacac3P7/贝I=Ao2÷cao-Aaco,+n(P×coj=AGil+RTln=0Pco2IPXaCaCoJ所以RnnaCaco,=KTInPCoA、"IRTlnKQCacO3二Pe(X101325/eoi325×3.5CC”。0.286”,c=0.286,/=-=0.512%0.559第五聿相平衡练习题答案四、计算及证明题答案:1 .解:(1)P=#725=60/(7.62×0.00245×2)=1607kgcm_2=15749×10'Pa(2)dpd=AV,dp=(配TA。d积分:A-P=(0×In(VTi).A=15749×10'Pa,p1=101325PaTi=273.15K,Ay=18.02/1.00-18.02/0.92=-1.567cm3ln(A制=(A-Pi)×VM!=(15746×10'-101325)×(-1.567×10-6)/6009.5=-0.04106T2=0.9598Ty=0.9598×273.15=262.16K即:f2=-1lX22 .解:7=273+181=454K,0=101325Palnl01325=-5960/454+B,B=24.654Inp=-5960+24.654,=273+70=343KInR=-5960/343+24.654=7.278,pi=1448.1Papinp=5960pinp二AHfflj.IT)nT2IT)pRT2因为'P,由克一克方程:'/PA(气化)=5960"=5960X8.314=49551Jmol,3 .解:由液态蒸气压方程InS,/")=17.613-7664,可得(气化)-R(-7664)=63718J/molA(升华)=熔融)+A(气化)=2320+63718=66038Jmol设固态的蒸气压方程In(./p)=-66038RT+C=-7943/7+C三相点T=243.3K在三相点处,ln(pp)=Igg加。)-7943/243.3+C=17.613-7664/243.3C,=18.76In(PJPe)=-7943/+18.76当7=273.2-78=195.2KIn(PJp0)=-7943/195.2+18.78=-21.93A=2.992×IO-10f=2.992×101°×101325=3.03XIOTPa5.解:计算出化合物中含V。为62%o75.31×(273.16-263)=765.15Jmol1,小于EoI过冷水结晶为冰放出的热量6020Jmo',所以无法使过冷水全部结(2)平衡时是三相(冰、水、蒸气)共存。(3)假设有XnIolH20(三)生成,由于过冷水结冰过程很快,故体系是绝热的,即263K时结出Xmol冰的放热,使冰水体系升温至273.16K。75.31×(273.16-263)=a6020X=0.127则平衡时有0.127mol冰和0.873mol水。(4)结晶过程的AS包括两部分,第一部分是Imol过冷水由263K升温至273.16K:nCp.mH2O(l)d753in2731165263=2.855JK1mol第二部分是Xmol水结成冰:AS=-Z4*/T=-6020x/273.16=一2.799JK1mol所以结晶过程的£=2.855-2.799=0.056JK1mo'9 .解:(1)由图I知化合物X中含B为0.25,它的结构为A3。1:1.+A(三);2:A(三)+A3B(三);3:A3B(三)+1.;4:AaB(三)+B(三);5:B(三)+1.(2)由图11知:1:固溶体2:1.+。:3:1.+£;4:固溶体5;5:。+£(3)由图In知X为A2B,Y为ABO1:液态1.;2:固溶体a:3:1.+a;4:1.+A2B(三);5:a+A2B(三);6:1.+AB(三);7:A2B(三)+AB(三);8:1.+AB(三);9:1.+B(三)10:AB(三)+B(三)10 .解:在I相中含16.8%的酚;在II相中含44.9%的水,则含酚为55.I%°(1)设物系点为。,其中酚含量为:60/150=40%于是+慨=150且的/%=(55.1-40)/(40-16.8)解得:的=59.1g,股=90.9g(2)等温下加水,物系点S向b点移动,到b点溶液开始变浑浊80/100+胪(水)=55.1%需加水/水)=45.2g解:(1)lnp(M)=-AT+B:T1=273+81=353K1.=273+156=429K101.325(kPa)=一429+B得:InS(澳苯)kPa=-4863.4+22.86(1)对H8O而言:353K,p=47.335kPa;373K,p=101.325kPa同理得:ln(水)kPa=-5010.6/7+24.96(2)又因为:d(溟苯)÷/(水)=101.325kPa(3)联立方程(1)、(2)、,解得力(澳苯)=15.66kPa,/(水)=85.71kPa代入得:T=368.4K=95.2X:(2)由0'(浪苯)=夕总y(溪苯):)(水)=ay(水)可得:炉(溟苯)/pY水)=y(嗅苯)/y(水)=n(嗅苯)/n(水)=1>(浪采)/(浪笨)/0(水)/,"(水)朋(溟苯)/阴(水)=EY溟苯)正水苯)/“水)水水)=(15.66X156.9)/(85.71X18)=1.593所以阴(溟苯)=1.593/2.593=61.4%(3)”(水)="(溪苯)/1.593=10/1.593=6.28kg12.解:在图上联结Cf,交AD线于g点,量出Cf=3.7cm,Cg=2.6cm,用杠杆规则计算g点物系质量,r(g)=100×3.7/2.6=142.3g,加水42.3g量出AD=2.6cm,Dg=0.9cm,w(NaCl)=142.3×0.9/2.6=49.26g四、计算及证明题答案:1 .解:筑原子的电子配分函数:由电子的光谱项可知,简并度计算公式=2j+l,P”、Ph2、P5.,2对应的简并度分别为:4,2,6g(电子)=goxp(-£JkT)÷gexp(-£JkTf+g2exp(-2kT)-4exp(-Aci¾A7)+2exp(-Ac¼A7)+6exp(-c½A7)=4×e,+2×exp(-0.5813)+6×exp(-147.4)=5.1182 .解:(1).=ll-exp(-t7)=ll-exp(-1000)=1.25exp(-l1000)=1-1/1.25=0.20所以l.=3219K11.25=0.803 .解:(D写出=8112U77(A2)=8X3.14/X1.89×1046X1.38×IOFx900lX(6.626×IO-31)2=421.5写出U-RTGHqjaT).Rf×(1/7)=RT写出转动对Qn的贡献CZ=(a«,57),、="=8.314JK'mo1