欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载  

    微电网储能:电池部署现状与预测(英).docx

    • 资源ID:7131777       资源大小:850.41KB        全文页数:56页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    微电网储能:电池部署现状与预测(英).docx

    EnergyStorageforMiniGridsStatusandProjectionsofBatteryDeploymentEnergyStorageforMiniGridsStatusandProjectionsofBatteryDeploymentThisreportoftheEnergyStoragePartnershipispreparedbytheEnergySectorManagementAssistanceProgram(ESMAP)withcontributionsfromtheAllianceforRuralElectrification(ARE),RicereasulSistemaEnergetico(RSE),1.oughboroughUniversity,andtheInter-AmericanDevelopmentBank(IADB).TheEnergyStoragePartnershipisaglobalpartnershipconvenedbytheWorldBankGroupthroughESMAPEnergyStorageProgramtofosterinternationalcooperationtodevelopsustainableenergystoragesolutionsfordevelopingcountries.Formoreinformationvisit:https:/www.esmap.org/the_energy_storage_partnership_espABOUTESMAPTheEnergySectorManagementAssistanceProgram(ESMAP)isapartnershipbetweentheWorldBankand24partnerstohelplow-andmiddle-incomeuntriesreducepovertyandboostgrowththroughsustainableenergysolutions.ESMAP,sanalyticalandadvisoryservicesarefullyintegratedwithintheWorldBank'scountryfinancingandpolicydialogueintheenergysector.ThroughtheWorldBankGroup(WBG)1ESMAPworkstoaeleratetheenergytransitionrequiredtoachieveSUStainabIeDeVeIODmenlGOal7(SDG7)toensureaesstoaffordable,reliable,sustainable,andmodernenergyforall.IthelpstosesandprogramstoachievetheWBGClimateChanaeACtiOnPlantargets.1.earnmoreat:htsWesmaD.OrQ©2023InternationalBankforRenstructionandDevelopmentZTheWorldBank1818HStreetNW,Washington,DC20433Telephone:;Internet:www.worldbank.oraRightsandPermissionsThematerialinthisworkissubjecttocopyright.BecausetheWorldBankencouragesdisseminationofitsknowledge,thisworkmaybereproduced,inwholeorinpart,fornoncommercialpurposesiffullattributiontothisworkisgiven.Anyqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedtoWorldBankPublications,WorldBankGroup,1818HStreetNW,Washington,DC20433,USA;fax:+1-;e-mail:DUbriahtWOrIdbank.or.Furthermore,theESMAPProgramManagerwouldappreciatereceivingacopyofthepublicationthatusesthispublicationforitssourcesentincareoftheaddressabove,ortoesmadworldbank.org.ThisworkisavailableundertheCreativeCommons3.0IGO)httD:/CreaIiVeCommon$.ora/license$/bv3.0io.UndertheCreativeCommonsAttributionlicense,youarefreetocopy,distribute,transmit,andadaptthiswork,includingforcommercialpurposes,underthefollowingconditions:Attribution-EnergySectorManagementAssistanceProgram(ESMAP).2023.EnergyStorageforMiniGrids:StatusandProjectionsofBatteryDeployment.Washington,DC:WorldBank.Translations-ThistranslationwasnotcreatedbyTheWorldBankandshouldnotbeconsideredanofficialWorldBanktranslation.TheWorldBankshallnotbeliableforanycontentorerrorinthistranslation.AdaptationsThisisanadaptationofanoriginalworkbyTheWorldBank.Viewsandopinionsexpressedintheadaptationarethesoleresponsibilityoftheauthor(三)oftheadaptationandarenotendorsedbyTheWorldBank.Third-PartyContent-TheWorldBankdoesnotnecessarilyowneachcomponentofthecontentcontainedwithintheworkanddoesnotwarrantthattheuseofanythird-partyownedindividualcomponentorpartcontainedintheworkwillnotinfringeontherightsofthosethirdparties.Ifyouwishtoreuseacomponentofthework,itisyourresponsibilitytodeterminewhetherpermissionisneededforthatreuseandtoobtainpermissionfromthecopyrightowner.Examplesofcomponentscaninclude,butarenotlimitedto1tables,figures,orimages.ProductionCreditsProductionEditorHeatherAustinDesignerCircleGraphics,Inc.FrontCover|©IRENABackCover©IRENAAllimagesremainthesolepropertyoftheirsourceandmaynotbeusedforanypurposewithoutwrittenpermissionfromthesource.tableOfcontentsABBREVIATIONSVllACKNOW1.EDGMENTSV川KEYFINDINGSIXEXECUTIVESUMMARYX1 BATTERYTECHNO1.OGIESINMINIGRIDSACROSSTHEWOR1.D11.1 TheGlobalStockofMiniGrids21.2 TheGenerationMixofMiniGrids31.3 TheRoleofStorage31.4 TheRoleofthe1.evelizedCostofStorageintheTechnologySelectionProcess51.5 UsingMiniGridsforProductiveUses:BeyondBasicAccesstoElectricity51.6 ChallengesFacedbyMiniGridDevelopers52 SIZEOFTHEG1.OBA1.MARKETFORMINIGRIDANDENERGYSTORAGE71 .1NumberofPeoplewithoutAccesstoElectricity722 ProjectedAccessby2030823 RuralMiniGridInstallationsin2021824 4ForecastingGlobalDemandforMiniGridsandBatteryStorageSystems93 SE1.ECTIONOFBATTERYTECHNO1.OGY121 .1FactorsInvestorsConsider1232 ComparisonofStorageTechnologies1433 TheCapitalCostofBatteries1534 4The1.evelizedCostofStorage164 FUTURETRENDSINBATTERYSTORAGEFORMINIGRIDAPP1.ICATION204.1 Used1.ithium-IonBatteriesasaStationaryStorageSolution204.2 Iron-AirBatteriesfor1.ong-TermEnergyStorage214.3 SodiumIonBatteries224.4 Hydrogen-PoweredStorage224.5 FlywheelEnergyStorageforMiniGridStabilization225 CASESTUDIES245.1 SolarMiniGridswith1.eadAcidBatteries:TheHuskPowerMicrogridsInitiativeinIndiaandNigeria245.2 SolarHybridMiniGridwith1.ithiumIronPhosphateBatteries:The1.olweIslands,Uganda255.3 SolarHybridMiniGridwith1.ithium-IonNickelManganeseCobaltBatteries:SanSeth,Bogale1Myanmar265.4 SolarHybridMiniGridwith1.ithiumIronPhosphateBatteries:Dancitagi,Nigeria265.5 SolarMiniGridwith1.ithiumIronPhosphateBatteries:Makhala1Amperehour,India275.6 SolarMiniGridwithVanadiumRedoxFlowBattery:Maldives285.7 SolarMiniGridwithFlywheelEnergyStorageSystems:ThePhilippines286 RECOMMENDATIONS31REFERENCES33APPENDIX A: TYPESOFENERGYSTORAGE35APPENDIX B: IMPROVINGTHEPERFORMANCEOF1.EADACIDBATTERYSTORAGEMINIGRIDS381.ISTOFFIGURESANDTAB1.ES1.ISTOFFIGURESANDTAB1.ESFIGURES1.1NumberofInstalledandPlannedMiniGrids,byRegion,2021212NumberofInstalledandPlannedMiniGridsinSelectedCountries,2022213GenerationMixofInstalledandPlannedMiniGrids,201931.4BatteryStorageTransitioninRuralMiniGridsinAsiaandAfrica,2012-21315PrimarySourceofBatteryStoragebySelectedMiniGridDevelopersin2017-2141.6MiniGridBatteryStorageasPercentageofTotalCapacity,byTechnologyType,2012-2141.7Sharesof1.eadAcidand1.ithium-IonasSourcesofBatteryStoragebyMiniGridsinSouthandSoutheastAsiaandAfrica,2022418EffectofGrid1.oadFactoron1.evelizedCostofElectricity51 .1NumberofPeopleWithoutAccesstoElectricity,byRegion,2021and2030822 ProjectedAnnualIncreaseinNumberofRuralPeoplewithAccesstoElectricity,byRegion,2021-30823 DistributionofMiniGridCapacity,byRegion,202192.4ProjectedAnnualGlobalDemandforRuralMiniGridinthe1.ow-,Base-,andHigh-CaseScenarios,2021-301025ProjectedGlobalCumulativeCapacityAdditionofNewRuralMiniGrids,2022-30102.6 ProjectedGlobalDemandforBatteriesforRuralMiniGrids,2021-30113.1 EstimatedandProjectedDemandforBatteriesforMiniGrids,byType,2021-301332CostofSix-HourStorage,byBatteryType,2022-30153.3 1.evelizedCostofStorageofSelectedBatteryTypesatDifferentDurations183.4 ContributionsofCapitalExpense,OperationsandMaintenance,ResidualValue,andElectricityCosttothe1.evelizedCostofStorage,byBatteryType183.5 EstimatedandProjected1.evelizedCostofStorageforSix-HourDurationSystem,byBatteryType194.1 ProjectedChangesinBatteryPerformanceBetween2018and2025,byTypeofBattery214.2 HuskMiniGridintheVillageofAkura,inNasawaraState,Nigeria254.3 HybridSolarMiniGridinthe1.olweIslands,Uganda254.4 IceManufacturingUnitPoweredbyEngie-EquatoriarsSolarMiniGridinthe1.olweIslands,Uganda264.5 HybridSolarMiniGridinSanSeth1Bogale,Myanmar274.6 SolarHybridMiniGridwithContainerizedEnergyStorageSolutionsInstalledbyPowerGeninDancitagi,Nigeria274.7 SolarMiniGridwithContainerizedBatteryEnergyStorageSysteminMakhala,India284.8 VanadiumRedoxFlowBatteryEnergyStorageSystemattheMalahiniKudaBandosResort,Maldives294.9 KineticEnergyStorageSystemsinthePalawanislands,thePhilippines30TAB1.ES1 .1EstimatedandProjectedMiniGridCapacityperHousehold,byRegion,2021and2030922 BatteryCapacityinSelectedMiniGridProjectsInstalledin2020-211123 Rat100fBatteryCapacitytoMiniGridInstalledCapacity111 .1TechnicalParametersofSelectedBatteryTechnologies1432 PughMatrixRankingofStorageTechnologiesinMiniGridApplications1533 DescriptionsandAssumedValuesin1.evelizedCostofBatteryStorageCalculations17ABBREVIATIONSCAPEXcapitalexpenditureCSRCorporateSocialResponsibilityDERdistributedenergyresourceEEEngie-EquatorialESPEnergyStoragePartnershipESSenergystoragesystem(三)FESSflywheelenergystoragesystem(三)GWhgigawatthour(三)kgkilogramkVAkilovoltamperekWkilowattkWhkilowatthor(三)kWpkilowattpeak1.COEIevelizedcostofelectricity1.COSIevelizedcostofstorage1.FPlithiumferro-phosphateMWhmegawatt(三)NMCnickelmanganesecobaltO&MoperationsandmaintenancePA1.ECOPalawanElectricCooperativePVphotovoltaicSIPCORS.l.PowerCorporationVRFBvanadiumredoxflowbatteryWwattWhwatthourWpwattpeakAllcurrencyisinUnitedStatesdollars(US$,USD),unlessotherwiseindicated.ACKNOW1.EDGMENTShisreportwaspreparedbytheWorldBank'sEnergySectorManagementAssistanceProgram(ESMAP)andCustomizedEnergySolutions,andundertheauspicesoftheWorkingGroupFiveoftheEnergyStoragePartnershipwithtechnicalcontributionsandreviewsbyJonExel(SeniorEnergySpecialist,WB),ChrisGreacen(Consultant,WB),andAlfredoVillavicencio(Consultant,WB).GabrielaElizondoAzuela(PracticeManager),ChandraGovindarajalu(1.eadEnergySpecialist),JulietPumpuni(SeniorEnergySpecialist,WB)1andClemenciaTorresdeMastle(SeniorEnergySpecialist,WB)providedinvaluablecontributionsandoverallguidance.SpecialthankstoHuskPowerSystems,EngieEnergyAccess,PowerGen,Amperehour1andAmberKineticsforprovidinginformationforthecasestudies;andtothefollowingEnergyStoragePartnershippartners-JensJaeger(ARE),1.ucianoMartini(RSE)1EdBrown(1.oughboroughUniversity),andEdwinMalagon(IADB)whoparticipatedinthepeerreviewprocess.KEYFINDINGSThisreportspecificallyfocusesonbatteryenergystorageindecentralizedoffgridminigridslocatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesusedinminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparisonofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbatterytechnologies,casestudies,andrecommendations.Inthehigh-casescenario,itisprojectedthatannualdemandforminigridbatteriesisprojectedtoincreasetoover3,600MWhby2030fromaround180MWhin2020.Inabase-casescenario,annualdemandexceeds2,200MWh,whileinthelowcaseannualdemandisaround1,500MWh.Theselectionofbatterytechnologyformini-gridprojectsisamulti-faceteddecisionbasedonfactorssuchascyclelife,depthofdischarge,typeofloadconnectedtothegrid,energydensity,C-rating,thermalrunaway,maintenance,after-salesservice,hardwarecompatibility,maturity,cost,batterydegradation,operatingconditions,andenvironmentalconcerns.TheIevelizedcostofstorage(1.COS)iscriticalforoptimaldecision-makinginminigriddevelopment.Thoughupfrontcostsoftendominatethetechnologyselectionprocess,the1.COSprovidesamorecomprehensiveperspectivebyconsideringthelifetimecostofstoragetechnologies.The1.COScalculationincorporatesthecapitalexpenditure,operationsandmaintenancecosts,residualvalue,andcostofchargingthebattery.Whileleadacidbatteriescostlesspernameplatecapacity($/kWh),thesuperiorcyclelife,efficiency,andpermissibleroutinedepthofdischargeoflithium-ionbatteriesresultinalower1.COS.1.ithium-ionbatterieshavegrowninpopularityandaredisplacingleadacidbatteries,thankstoreducedprices,longerlifespan,andminimalmaintenancerequirements.Historically,leadacidbatterieswerethego-tochoiceduetotheirmaturity,availability,andlowupfrontcost.1.ithium-ionpricesareforecastedtodeclineuntil2030.Incontrast,leadacid,amaturetechnology,maynotwitnesssignificantpricedrops.Forecastssuggestthatlithium-ionbatterieswillextendtheirleadasthelowest-costbatterytechnologyforminigridsdroppingfrom20221.COSof$0.37perkWhto$0.34in2026and$0.32by2030,notwithstandingthelikelihoodthatrawmaterialcostsforlithium-ionbatteriesriseduetodemandfromtheelectricvehicleindustry.Thecostofleadacidbatterieswilldeclineonlyslightly,from$0.55to$0.54perkWhoverthistimeperiod.Inthenearfuture,otherbatterystorageoptionsarepromising,including"second-life"lithium-ionbatteries,sodium-ionbatteries,iron-airbatteries,hydrogen,andflywheelenergystorageThisreportincludescasestudiesofminigridsfromAfricaandAsiathathighlightglobaldeploymentofbatterytechnologiesrangingfromconventionalleadacidtolithium-ion,toVRBFandflywheelstorage.Eachcasestudydescribestheminigrid'srating,energystoragerating,batterychemistry,businessesserved,communitieselectrified,andthewayinwhichtheelectricityisused.Minigridenergystoragerecommendationsinclude:studyingbatteryperformanceinactualoperatingconditions,consideringtotalcostandnotjustupfrontbatterycost,adoptingsafetyandperformancestandards,promotingrecyclingpractices,encouragingtheuseofrepurposedbatterytechnologies,exemptingminigridbatteriesfromimportduties,providingtechnicalskillstraining,andcreatingstandardoperatingprocedurestounderstandbatterytechnologyperformance.EXECUTIVESUMMARYheEnergyStoragePartnership(ESP),establishedbytheWorldBankin2019,aimstodevelopandimplementenergystoragesolutionsfordevelopinguntries.Thesesolutions,coupledwithrenewableenergysources,couldprovideelectricitytoover1billionpeoplewhocurrentlylackreliableaccess.Aminigridisaninterconnectedsystemofdistributedenergyresources(DERs)-generallyincludingrenewableenergyandelectricitystorage-thatoperatesindependently,servicingcustomergroupsofvarioussizes,fromremoteareastourbanlocations.Theseminigridssupportarangeoffacilitiesincludingprimaryhealthcenters,agriculturalactivities,learningcenters,hospitals,airports,andcommercialestablishments.Thisreportspecificallyfocusesonbatteryenergystorageindecentralizedoff-gridminigridslocatedinremoteareas.Itprovidesanoverviewofbatterytechnologiesusedinminigridsglobally,demandforecastsforvariousbatterytechnologies,acomparisonofcharacteristicsofdifferentbatteries,anexplorationofcostsandtrendsinbatterytechnologies,casestudies,andrecommendations.Italsoincludesappendicesthatofferabroadoverviewofmechanical,electrochemical,andthermalstorage,aswellasperformanceoptimizationofleadacidbatteriesinminigrids.Globalelectricityneeds,particularlyinremoteandruralareas,areasignificantchallenge.Asof2020,anestimated740millionpeoplestilllackaccesstoelectricity,577millionofwhomliveinSub-SaharanAfrica(SSA).ThoughSSAhasanelectrificationrateof48%asof2020,ambitiousnationalelectrificationplansincountriessuchasEthiopia,Ghana,Kenya,Nigeria,Rwanda,andSenegalaimtoattainuniversalaccessby2030.Someofthese2030targetshavebeenimpactedbytheCOVID-19pandemic,withmanydevelopingcountrieslikelytoexperiencedelays.Undertheexistingtrajectory,itisexpectedthatabout800millionpeoplewillgainaccesstoelectricitybetween2021and2030,leaving560millionunelectrified.Toachievefullelectrificationby2030,itisnecessarytoprovideelectricitytoaround1.3billionpeople.Growingdeploymentofminigridsarereachingsomeofthisunelectrifiedpopulation,with21,000minigridscurrentlyservingabout48millionpeopleworldwide.Toservehalfabillionpeopleby2030,theworldneedsafleetof217,000minigrids,mostofwhichwillbepredominatelypoweredbysolarelectricitywithbatterybackup.SouthAsiapresentlyleadswiththehighestnumberofinstalled(9,600)andplanned(19,000)minigrids.Afghanistan,India,andMyanmarcompriseabout80%of

    注意事项

    本文(微电网储能:电池部署现状与预测(英).docx)为本站会员(李司机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开