第七章铸件宏观组织.ppt
1,一、铸件的宏观组织构成二、表面激冷区及柱状晶区的形成三、内部等轴晶的形成机理四、铸件宏观结晶组织的控制,第七章 铸件宏观组织的控制机理及方法,2,一、铸件的宏观组织构成,1.表面激冷细晶区,晶粒细小均匀2.柱状晶区,晶粒垂直于型壁排列,平行于热流方向.内部等轴晶区,晶粒较为粗大;,3,几种不同类型的铸件宏观组织示意图(a)只有柱状晶;(b)表面细等轴晶加柱状晶;(c)三个晶区都有;(d)只有等轴晶,4,大多数工业应用情况下,希望铸件宏观组织获得各向同性的等轴细晶粒组织。为此,应创造条件抑制晶体的柱状长大,而促使内部等轴晶的形成和等轴晶细化。就断裂而论,裂纹最易沿晶界扩展(特别是存在着溶质及杂质偏析时)。柱状晶相碰的地带溶质及杂质聚积严重,造成强度、塑性、韧性在柱状晶的横向方向大幅度下降,对热裂敏感,腐蚀介质中易成为集中的腐蚀通道。,柱状晶的特点是各向异性,对于诸如磁性材料、发动机和螺旋浆叶片等这些强调单方向性能的情况,采用定向凝固获得全部柱状晶的零件反而更具优点。如何在技术上有效地控制铸件的宏观组织十分重要。因此有必要学习各晶区组织的形成机理。,5,第二节 表面激冷区及柱状晶区的形成,一、表面激冷区的形成二、柱状晶区的形成,6,一、表面激冷区的形成,形成机理:1)型壁强烈的激冷作用,产生很大的过冷度而大量非均质生核;2)各种形式的晶粒游离也是形成表面细等轴晶的“晶核”来源。生长形态:这些晶核在过冷熔体中采取枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。,一旦型壁附近的晶粒互相连结而构成稳定的凝固壳层,凝固将转为柱状晶区由外向内的生长,表面激冷细晶粒区将不再发展。因此稳定的凝固壳层形成得越早,表面细晶粒区向柱状晶区转变得也就越快,表面激冷区也就越窄。,7,二、柱状晶区的形成,形成机理:凝固壳层一旦形成,造成单向的散热条件,由表面细等轴晶凝固层某些晶粒为基底向内生长,发展成由外向内生长的柱状晶区。枝晶主干取向与热流方向平行的枝晶生长迅速,择优生长。,柱状晶区大小:开始于稳定凝固壳层的产生,而结束于内部等轴晶区的形成。因此柱状晶区的存在与否及宽窄程度取决于上述两个因素综合作用的结果。如果在凝固初期就使得内部产生等轴晶的晶核,将会有效地抑制柱状晶的形成。,8,第三节 内部等轴晶的形成机理,一、“成分过冷”理论二、激冷等轴晶型壁脱落与游离理论三、枝晶熔断及结晶雨理论四.单个等轴晶形成过程的动态演示,9,一、“成分过冷”理论,该理论认为,随着凝固层向内推移,固相散热能力逐渐削弱,内部温度梯度趋于平缓,且液相中的溶质原子越来越富集,从而使界面前方成分过冷逐渐增大。当成分过冷大到足以发生非均质生核时,便导致内部等轴晶的形成。,10,a)7500C水淬,摇动 b)在坩埚中置一不锈钢筛网大野笃美的实验,11,二、激冷等轴晶型壁脱落与游离理论,在浇注的过程中及凝固的初期激冷,等轴晶自型壁脱落与游离促使等轴晶形成,浇注温度低可以使柱状晶区变窄而扩大等轴晶区。,12,图5-5 型壁处形成的激冷晶向铸件内部的游离a)晶体密度比熔体小的情况;b)晶体密度比熔体大的情况,为什么纯金属几乎得不到等轴晶而溶质浓度大的合金容易得到等轴晶呢?,13,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳,另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去。,图5-6 晶体与型壁交会处产生“脖颈”促使晶体发生脱落而游离,14,图5-7 游离晶体的生长、局部熔化与增殖,15,三、枝晶熔断及结晶雨理论,生长着的柱状枝晶在凝固界面前方的熔断、游离和增殖导致了内部等轴晶晶核的形成,称为“枝晶熔断”理论。液面冷却产生的晶粒下雨似地沉积到柱状晶区前方的液体中,下落过程中也发生熔断和增殖,是铸锭凝固时内部等轴晶晶核的主要来源,称为“结晶雨”理论。,16,多种机制的共同作用:目前比较统一的看法是内部等轴晶区的形成很可能是以上几种机制共同作用的结果。在一种情况下,可能是某种机理起主导作用,在另一种情况下,可能是另一种机理在起作用,或者是几种机理的综合作用,而各自作用的大小当由具体的凝固条件所决定。,17,四、单个等轴晶形成过程的动态演示,各向同性,多方向生长 各向异性,四向生长 各向异性,六向生长 各向异性,双核生长,18,第四节 铸件宏观结晶组织的控制,铸件中各晶区的相对大小、晶粒的形态和粗细是由以下两个方面的因素决定:1)过冷熔体独立生核的能力 2)各种形式晶粒游离、增殖或重熔的程度凡能强化熔体独立生核,促进晶粒游离,以及有助于游离晶的残存与增殖的各种因素都将抑制柱状晶区的形成和发展,从而扩大等轴晶区的范围,并细化等轴晶组织。,19,一、合理地控制浇注工艺和冷却条件二、孕育处理三、动力学细化,20,(1)浇注工艺控制(2)冷却条件的控制,21,合理的浇注工艺,浇注温度浇注方式,合理降低浇注温度是减少柱状晶、获得及细化等轴晶的有效措施。但过低的浇注温度将降低液态金属的流动性,导致浇不足和冷隔等缺陷的产生。,通过改变浇注方式强化对流对型壁激冷晶的冲刷作用,能有效地促进细等轴晶的形成。但必须注意不要因此而引起大量气体和夹杂的卷入而导致铸件产生相应的缺陷。,22,铸型中间浇注 单孔上注 沿型壁六孔浇注,图5-8 不同浇注方法引起不同的铸件凝固组织,23,冷却条件的控制,控制冷却条件的目的是形成宽的凝固区域和获得大的过冷,从而促进熔体生核和晶粒游离。小的温度梯度GL和高的冷却速度R可以满足以上要求。但就铸型的冷却能力而言,除薄壁铸件外,这二者不可兼得。,对薄壁铸件,可采用高蓄热、快热传导能力的铸型。,对厚壁铸件,一般采用冷却能力小的铸型以确保等轴晶的形成,再辅以其他晶粒细化措施以得到满意的效果。悬浮浇注法可同时满足小的GL与高的R的要求。,24,悬浮浇注法是在浇注过程中将一定量的固态金属颗粒加入到金属液中,从而改变金属液凝固过程,达到细化组织、减小偏析、减小铸造应力的目的的一种工艺方法。,悬浮浇注用涡流导入法的浇注系统,料斗,离心集液包,直浇道,25,二、孕育处理,孕育处理(Inoculation):是浇注之前或浇注过程中向液态金属中添加少量物质以达到细化晶粒、改善宏观组织目的的一种工艺方法。孕育主要是影响生核过程,促进非自发形核以细化晶粒;促进晶粒游离,细化晶粒.变质处理(Modification):则是改变晶体的生长机理,从而影响晶体形貌。变质在改变共晶合金的非金属相的结晶形貌上有着重要的应用,而在等轴晶组织的获得和细化中采用的则是孕育方法。,26,孕育剂作用机理的两类观点,孕育主要起非自发形核作用,通过在生长界面前沿的成分富集而使晶粒根部和树枝晶分枝根部产生缩颈,促进枝晶熔断和游离而细化晶粒。,孕育剂含有直接作为非自发生核的物质 孕育剂能与液相中某些元素反应生成较稳定的化合物而产生非自发生核在液相中造成很大的微区富集而迫使结晶相提前弥散析出而生核,27,表5-1 合金常用孕育剂的主要元素情况,28,孕育衰退(孕育效果逐渐减弱),孕育剂加入合金液后要经历一个孕育期和衰退期。在孕育期内,作为孕育剂的中间合金的某些组分完成熔化过程,或与合金液反应生成化合物,起细化作用的异质固相颗粒均匀分布并与合金液充分润湿,逐渐达到最佳的细化效果。当细化效果达到最佳值时浇注是最理想的,随合金熔化温度和孕育剂种类的不同,达到最佳细化效果所需要的时间也不同。,孕育衰退:几乎所有的孕育剂都有在孕育处理后一段时间出现孕育衰退现象.影响孕育效果的因素:孕育剂的种类(成分)和孕育 处理工艺。1)处理温度:一般处理温度越高,孕育衰退越快,在保证孕育剂均匀散开的前提下,应尽量降低处理温度。2)时间:尽可能缩短孕育处理与浇注之间的时间(瞬时孕育);3)孕育剂粒度要根据处理温度、合金液量和处理方法来选择。,29,三、动力学细化,1机械振动2超声波振动3液相搅拌4流变铸造,30,1机械振动,在凝固过程中振动铸型可使液相和固相发生相对运动,导致枝晶破碎形成结晶核心。离心铸造时若周期改变旋转方向可获得细小等轴晶,说明液相和固相发生相对运动所起的细化晶粒作用。振动还可引起局部的温度起伏,有利于枝晶熔断。振动铸型可促使“晶雨”的形成。,立式离心铸造机,31,2超声波振动,超声波振动可在液相中产生空化作用,形成空隙,当这些空隙崩溃时,液体迅速补充,液体流动的动量很大,产生很高的压力。当压力增加时凝固的合金熔点温度也要增加,从而提高了凝固过冷度,造成形核率的提高,使晶粒细化。,32,3液相搅拌,采用机械搅拌、电磁搅拌或气泡搅拌均可造成液相相对固相的运动,引起枝晶的折断、破碎与增殖,达到细化晶粒的目的。,连铸过程采用电磁搅拌的主要作用是提高连铸坯的质量,例如去除夹杂物、消除皮下气泡、减轻中心偏析、提高连铸坯的等轴晶率。在浇铸断面较大的铸坯以及浇铸质量要求较高时,电磁搅拌技术便成为首选。,33,4流变铸造,流变铸造又称半固态铸造,这种方法是当液体金属凝固达5060时,在氩气保护下进行高速搅拌,使金属成为半固态浆液,将半固态浆液凝固成坯料或挤压至铸型凝固成形。其固态晶体随搅拌转速的增加趋于细小而圆整,机械性能显著提高。,这种细小圆整的半固态金属浆液由于具有较好的流动性而容易成形。因为它的温度远低于液相线温度,所以对于黑色金属的压铸件来说,能大大减轻金属对模具的热冲击,提高压铸模具的寿命,扩大黑色金属压铸的应用范围。,34,传统铸造a)和流变铸造b)所获得的显微组织,