抛物线和性质知识点大全.docx
抛物线及其性质1 .抛物线定义:平面内到一定点F和一条定直线/的距离相等的点的轨迹称为抛物线.2 .抛物线四种标准方程的几何性质:图形4k-市参数P几何意义参数P表示焦点到准线的距离,P越大,开口越阔.开口方向右左上T标准方程y2=2PX(P>0)=-2px(p>0)X2=2pyp>0)X2=-2py(p>0)焦点位置X正X负Y正Y负焦点坐标(f.0)(-多0)(0,9(OT)2准线方程LK2X=E212y=E2范围x0,y三Rx0,yHy0,x?y0,x三R对称轴X轴X轴Y轴Y轴顶点坐标(0,0)离心率e=l通径2p焦半径A(XQj)AF=X12F=-x112AF=凹+AF=-y+-12焦点弦长IABl(x1+x2)+p-(x1+2)+P(y+%)+-(>,+y2)+P焦点弦长IABl的补充A(X1,%)U2,y2)以AB为直径的圆必与准线/相切若A3的倾斜角为,|八Bl=2Psin2a若43的倾斜角为二,则=Cosa2p22=y2=-p11AFBFAB2+AFBFAFBFAFBFP3.抛物线2=2"M”>()的几何性质:(1)范围:因为P>O,由方程可知x20,所以抛物线在y轴的右侧,当X的值增大时,Iyl也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向.顶点(0,0),离心率:e=lf焦点嘴,0),准线=焦准距p.(4)焦点弦:抛物线F=2px(p>0)的焦点弦AB,A(Xl,/),(乙,力),则IABl=X+/+P弦长IABl=x1+x2+p,当xi=x2b+,通径最短为2o4 .焦点弦的相关性质:焦点弦AB,A(xl9yl),B(x2,y2)f焦点/(4,O)(1)若AB是抛物线)?=2px(p>0)的焦点弦(过焦点的弦),且A(Xl,y),B(x2,y2),JO1J:a-1x5=-,"4JlJ2=-P-O(2)若AB是抛物线)J=2p(p>0)的焦点弦,且直线AB的倾斜角为,则IzWl=卫(0)oIISin2«11p+BFAB2(3)已知直线AB是过抛物线J=2PX(P>0)焦点F,1=AFBFAFBFAFBFP(4)焦点弦中通径最短长为2p。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5)两个相切:以抛物线焦点弦为直径的圆与准线相切.过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。5 .弦长公式:A(Xl,弘),8(冗2,力)是抛物线上两点,则B=(x1-2)2+(y1-y2)2=Ji+%?I项一/=J+表IM-乂I6 .直线与抛物线的位置关系直线Ly=H+B,抛物线Uy2=2",y=kx+by=20x,消y得:V+2(-)x+2=0(1)当k=0时,直线/与抛物线的对称轴平行,有一个交点;(2)当k0时,>0,直线/与抛物线相交,两个不同交点;=0,直线/与抛物线相切,一个切点;<0,直线/与抛物线相离,无公共点。(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)7 .关于直线与抛物线的位置关系问题常用处理方法直线/:y=kx+b抛物线Uy'=2,x,(P”0)联立方程法:y:kx+b=甘炉+2(kb-P)X+b2=0y=2px设交点坐标为A(x1,y1),B(x2,y2),则有AAO,以及司+x2,x1x2,还可进一步求出y+y2=kxl+b+kx2+h=k(xl+x2)+2b,yly2=(kxy+b)kx1+Z7)=k1xxx2÷kb(x+x2)+Z?2在涉及弦长,中点,对称,面积等问题时,常用此法,比如a.相交弦AB的弦长IB=1+Fx1-x21=1+2(x1+x2)2-4xix2=JI+公产或IbI=J+却=->2=j+*J(y+)'2)2-4%为=J+12b.中点MCrO,%),Xo=1了,%=-)!;点差法:设交点坐标为A(X”y),B(x2,y2),代入抛物线方程,得康二2师y22=2px2将两式相减,可得(%一Xm+%)=2pUi-X?)兄一以一2Xl-X2>j+y2a.在涉及斜率问题时,kAB=3+刈b.在涉及中点轨迹问题时,设线段AB的中点为M(,y°),又二匹=二£_=22=2,为一/y+%2X)%即砥6=2,Jo同理,对于抛物线d=2Py(P0),若直线/与抛物线相交于A、B两点,点、M(XO,y°)是弦AB的中点,则有的=922pp(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)【经典例题】(1)抛物线二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=l,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P为抛物线y2=2p上任一点,F为焦点,则以PF为直径的圆与y轴()D位置由P确定A相交8.相切C.相离【解析】如图,抛物线的焦点为广究,0),准线是/:1=一为作PH_L/于H,交y轴于Q,那么IP同=IP且|。M=IoH=.作MNJ_y轴于N则MN是梯形PQOF的中位线,N=g(OF+1PQ)=gIPM=J尸目.故以PF为直径的圆与y轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则分别是相离或相交的.(2)焦点弦一常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】过抛物线y?=2PX(PAo)的焦点F作直线交抛物线于A(N,yJ,5(/,%)两点,求证:I2(1) A3=%+%+(2)I1+I=一1 1,2,AFBFp【证明】(1)如图设抛物线的准线为/,作A14,四_L/于旦,则IAFl=IA4t=x+g忸日=忸图=/+.两式相加即得:AB=x1+x2+p(2)当AB-LX轴时,有112af=IbfI=p9:.-,-+1_r=一成立;1 111zAFBFp当AB与X轴不垂直时,设焦点弦AB的方程为:.代入抛物线方程:/22=2PX.化简得:k2x2-p(k2+2)x+-k2=O(1);方程(1)之二根为Xi,×2,*XX7=.14111111xl+x2+p-I-I-三m-阴阳IMl阿L4X2÷x1x2÷(x1÷x2)÷4_x1+x2+p_x1+x2+p_24+yU+)+f+%+p)p112故不论弦AB与X轴是否垂直,恒有:7+jr=一成立.M附p(3)切线一抛物线与函数有壕有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线y2=2px上一点M(xo,yo)的切线方程是:yoy=p(×+xo)【证明】对方程V=2px两边取导数:2yy'=2p,.y'=K.切线的斜率yZ=ymb=,.由点斜式方程:y-%=f(X-X(J)=>%y=px_pxo+y;yj=2p/,代入即得:y0y=P(×+×o)(4)定点与定值抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则此动圆必过定点()A(4,0)8(2,0)C.(0,2)D.(0,-2)显然.本题是例1的翻版,该圆必过抛物线的焦点,选B.2 .抛物线y2=Ipx的通径长为2p;3 .设抛物线y?=2px过焦点的弦两端分别为Aa,),3(W,%),那么:P2以下再举一例【例4】设抛物线=2px的焦点弦AB在其准线上的射影是AB,证明:以AB为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么AB=AB=2p,而AB与AB的距离为p,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB的一般情形给于证明.【证明】如图设焦点两端分别为A(APy),3(%,%),那么:yiy2=-P2=>C41CB1=y1y2=P2.设抛物线的准线交X轴于C,那么IeFI=.然/4中|。尸|2=|6.仁图.故41尸4=90。.这就说明:以AB为直径的圆必过该抛物线的焦点.通法特法妙法(1)解析法为对称问题解困排难解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等).【例5】(10.四川文科卷.10题)已知抛物线y=-'+3上存在关于直线x+y=0对称的相异两点A、B,则IABl等于()A.3B.4C.32D.42【分析】直线AB必与直线x+y=O垂直,且线段AB的中点必在直线x+y二。上,因得解法如下.【解析】点A、B关于直线x+y=O对称,设直线AB的方程为:y=x+tn.y=x+m9/、由<一、=>x2+x÷w-3=0(1)y=-2+3V7设方程(1)之两根为Xi,X2,则+W=-L设AB的中点为M(xo,yo),则=、+”=.代入x+y=O:y0=L故有Mj-222I22yl从而机=y-=1.直线AB的方程为:y=x+l.方程(1)成为:2+x-2=0.解得:X=-2,1,从而y=T,2,故得:A(-2,-1),B(1,2)./.AB=32,选C.(2)几何法为解析法添彩扬威F(1.0)虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(11.全国1卷.11题)抛物线二叔的焦点为产,准线为/,经过尸且率为的直线与抛物线在X轴上方的部分相交于点A,AKl/,垂足为K,则府的面积(A.4B.3耳C.43D.8【解析】如图直线AF的斜率为6时NAFX=60°.AFK为正三角形.设准线/交X轴于M,则IfMl=2,ZT且NKFM=60°,国产|=4,5*=子*42=4近.选(1【评注】(1)平面几何知识:边长为a的正三角形的面积用公式SA=Cr计算.(2)本题如果用解析法,需先列方程组求点A的坐标,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法一追本求真的简单一看许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单.【例7】(07.湖北卷.7题)双曲线c1-=i(t7>o,z?>o)的左准线为/,左焦点和右焦点分别为尸I和B:抛物线G的线为ab/,焦点为居;G与C,的一个交点为则上国一弊!等于()MFMF2A.-1B.1C.-D.-22【分析】这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半焦距c,离心率为e,作MH工/于H,令阿周二G 故 j =解J = : =这就是说:竺J的实质是离心率e.IMBlMF=,MF2=弓.点M在抛物线上,其次,止国与离心率e有什么关系?注意至hIMKl忻用=2c=e2je«+4)这样,最后的答案就自然浮出水面了:由于一J=(e-1)+e=-1.,选A.MFIMBlI)(4)三角法本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(09.重庆文科.21题)如图,倾斜角为昌的直线经过物线y2=8.r的焦点F,且与抛物线交于48两点。(I)求抛物线的焦点厂的坐标及准线/的方程;(Il)若占为锐角,作线段48的垂直平分线加交X轴于点E证明IFPI-IFPICos2a为定值,并求此定值。【解析】(I)焦点F(2,0),准线,/;x=-2.(Il)直线AB:y=tana(x2)(1).X=L代入(1),整理得:y2tancr-8y-16ta116r=0(2)88设方程(2)之二根为W,y2,虬y+%=tana.j1y2=-16设AB中点为M(XO,%),则V1 + y>4.yft = = 4COta2tanaXo=COta % + 2 = 4 cot2 a + 2AB的垂直平分线方程是:y-4cota=-cota(x-4cot2a-2).令y=0,则x=4cola+6,有尸(4COt?a+6,0)故阀=IOPI-OF=4cot2a+6-2=4(cot2a+)=4cos2a于是IFPl-IFPlCOS2a=4csc?a(l-cos2tz)=4csc2a2sin2a=8,故为定值.(5)消去法合理减负的常用方法.避免解析几何中的繁杂运算,是革新、创新的永恒课题.其中最值得推荐的优秀方法之一便是设而不求,它类似兵法上所说的“不战而屈人之兵”.【例9】是否存在同时满足下列两条件的直线/:(1)/与抛物线y?=8x有两个不同的交点A和B:(2)线段AB被直线:x+5y-5二。垂直平分.若不存在,说明理由,若存在,求出直线/的方程.【解析】假定在抛物线丁=8上存在这样的两点A(X,y1),B(2,%)则有:"'(>>+>2)(>,-)=8(X1-x2)=>kAB=/X1y2=Sx2(NT2)(%+%)1Q线段AB被直线/:x+5y-5=0垂直平分,且=一,.=5,EPz=515(+%)8=>+=-设线段AB的中点为M(X0,y0),则为=当2=代入x+5y-5=0得x=1.于是:AB中点为M.故存在符合题设条件的直线,其方程为:4y-=5(x-l),BP:25x-5y-21=0(6)探索法奔向数学方法的高深层次有一些解析几何习题,初看起来好似“树高荫深,叫樵夫难以下手”.这时就得冷静分析,探索规律,不断地猜想证明再猜想再证明.终于发现“无限风光在险峰”.【例10】(10.安徽卷.14题)如图,抛物线片-/+1与X轴的正半轴交于点4将线段外的等分点从左至右依次记为A月,,幺1,过这些分点分别作X轴的垂线,与抛物线的交点依次为a,at,Qz,从而得到丁1个直角三角彩ZO0R,AaRPo,AQzPzPz,当18时,这些三角形的面积之和的极限为.【解析】QAI=L二图中每个直角三角形的底边长均为设OA上第k个分点为(1,()代入),=一一+1:J=第k个三角形的面积为:ak=I1vl2nn) Si±n12÷22÷÷(-)2JLl)(4+1)2()n22故这些三角形的面积之和的极限S=IimW->00(I)2n12n八nJ