计算机的逻辑部件1(补充内容).ppt
计算机的逻辑部件,Computer Organization,2023/11/17,2,本讲是计算机组成原理课程的预备性知识它本身是“数字逻辑与数字集成电路”课程的部分内容;对计算机专业的学生来说,在通常教学安排中,“数字逻辑与数字集成电路”是单独的一门重要课程,并作为“计算机组成原理”课程的先修课。计算机组成原理的基础知识是:数字电路。通过数字电路的门电路、触发器、移位寄存器、译码器、时序电路等这些部件,来构成计算机的某些部件。例如:运算器,控制器,存储器等。所以如果数字电路没有学,学计算机组成原理比较难。,计算机的逻辑部件,2023/11/17,3,从课程大纲内容深度看,对尚未学习过数字逻辑与数字集成电路课程的学生来说,由于缺少许多更基本的知识造成对本课程的一些内容不易理解,因此需要自己补学以下内容半导体电路、三极管电路的运行原理简单的数字逻辑门电路的运行原理布尔代数的基本公式和化简等。这些基础知识,帮助我们理解:电路为什么能实现逻辑功能呢?电路怎么能算题呢?,计算机的逻辑部件,2023/11/17,4,1、晶体三极管与反相电路2、逻辑运算与数字电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,本章的预备知识,2023/11/17,5,晶体三极管与反相电路,物体按导电特性分为:半导体:用单方向导电的物体(可以实现二极管)导体:双向导电绝缘体:不导电,二极管:电流只能由左向右,2023/11/17,6,晶体三极管与反相电路,三极管:(集电极、发射极、基极)在半导体的基体上经过人工加工生产而成。三极管:大体上等于一个电子开关。基极 输入高电平 0.7 V(三极管导通)电源电阻集电极发射极集电极发射极之间电压低,接近0V。所以集电极输出电平为0 V,基极 输入低电平=0 V(三极管截止)电源不能通过集电极流向发射极集电极发射极之间电压高,比如 4 V,所以集电极输出电平为4 V。三极管构成了一个反相器电路,完成逻辑取反功能。反相器电路是构成其他逻辑线路的基础内容。,+Vcc(+5V),+Vcc,电源,电阻,集电极,输入,基极,输出,发射极,接地,接地,输入,输出,两个反相器,2023/11/17,7,两种最基本的门电路:与非门,或非门,与非门:两路输入都高,输出才为低。两个三极管都导通时,输出低电平。,+Vcc(+5V),电源,电阻,输入1,输出,T 1,接地,输入2,T 2,晶体三极管与反相电路,2023/11/17,8,+Vcc(+5V),电源,输入 1,输出,接地,接地,输入 2,或非门:任何一路输入为高,输出都为低。,在此基础上,可以制作并使用不带反相功能的与门和或门电路。输入控制端可以多于2个。,用晶体管实现带有一定逻辑的电路,由此可以理解半导体电路为什么可以实现逻辑功能。,晶体三极管与反相电路,两种最基本的门电路:与非门,或非门,2023/11/17,9,1、晶体三极管与反相电路2、逻辑运算与数字逻辑电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,本章的预备知识,2023/11/17,10,电子电路中的信号,模拟信号,数字信号,随时间连续变化的信号,时间和幅度都是离散的,逻辑运算与数字逻辑电路,u,2023/11/17,11,模拟信号:注重电路输入、输出信号间的大小、相位关系。模拟电路:包括交直流放大器、滤波器、信号发生器等。在模拟电路中,晶体管一般工作在放大状态。,逻辑运算与数字逻辑电路,数字信号:注重电路输出、输入间的逻辑关系。数字电路:主要分析工具是逻辑代数;数字电路的功能用真值表、逻辑表达式或波形图表示。数字电路中,三极管工作在开关状态下,即工作在导通状 态或截止状态。,按照信号形式的不同,我们将电路分为两大类:模拟电路与数字电路。模拟电路处理的是模拟信号;数字电路处理的是数字信号。,2023/11/17,12,逻辑运算与数字逻辑电路,逻辑问题的前提是二值性问题,一个问题只有二种答案,“真”“假”。不存在第三种似是而非的答案。逻辑问题一般用“1”和“0”表示二种答案。“1”和“0”表示一个问题的两种结果,不表示数,无大小之分。逻辑常量:“1”“0”,例:在举重比赛中,有两名副裁判,一名主裁判。裁判认为合格的按动手中的电钮,当两名以上裁判(必须包括 主裁判在内)认为运动员上举杠铃合格,裁决合格信号灯亮,试设计该信号灯逻辑电路。解:设主裁判为变量 A,副裁判分别为 B 和 C;按下电钮为1,不按为 0。表示成功与否的灯为 Y,Y=1:灯亮合格,Y=0:不亮不合格。所以当 A=1,且 B C 中只要有一个为1,则Y=1。,2023/11/17,13,三种基本逻辑运算(可以构造出任何逻辑函数):与(XY 逻辑乘)当且仅当X,Y均为 1 时,XY才为 1,否则为 0。或(X+Y 逻辑加)只要X,Y任一(或者同时)为 1 时,X+Y 为 1,否则为 0。非(X 逻辑反)当X为 1 时,X为 0;当X为 0 时,X为 1。,逻辑运算与数字逻辑电路,三种最基本的逻辑电路:与门、或门、非门;它们可以组合出实现任何复杂的逻辑运算功能的电路。正好可以相应实现逻辑与运算、或运算,非运算。简单的对应了逻辑运算功能和数字逻辑电路。,2023/11/17,14,与运算(XY 逻辑乘)我们用开关A、B 串联控制灯F 的亮与灭,说明与逻辑的功能。,定义:开关合上为“1”,断开为“0”灯亮为“1”,灯灭为“0”。,B,A,F,R,E,逻辑运算与数字逻辑电路,2023/11/17,15,与运算(XY 逻辑乘),开关合上为“1”,断开为“0”灯亮为“1”,灯灭为“0”。,1、真值表 将 A B 各种可能的情况与 灯 F 的关系列表如图:,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,2023/11/17,16,2、逻辑函数表达式 F=AB 将逻辑常量 0 1 代入:,开关合上为“1”,断开为“0”灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,与运算(XY 逻辑乘),2023/11/17,17,3、逻辑符号 目前存在三种符号表示,逐渐应统一到国际标准。,开关合上为“1”,断开为“0”灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,与运算(XY 逻辑乘),2023/11/17,18,4、波形关系 高电平为“1”,低电平为“0”A、B都高时,F才为高,开关合上为“1”,断开为“0”灯亮为“1”,灯灭为“0”。,与运算(XY 逻辑乘),描述与逻辑功能有不同的手段,逻辑运算与数字逻辑电路,2023/11/17,19,或逻辑(X+Y 逻辑加)我们用开关A、B 并联控制灯F 的亮与灭,说明“或”逻辑的功能。,定义:开关 A 或 B 合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,2023/11/17,20,1、真值表 将AB各种可能的情况与 灯F的关系列表表示右图:,或逻辑(X+Y 逻辑加),开关 A 或 B 合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,2023/11/17,21,2、逻辑函数表达式 F=A+B 将逻辑常量 0 1 代入:,或逻辑(X+Y 逻辑加),开关 A 或 B 合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,2023/11/17,22,3、逻辑符号,或逻辑(X+Y 逻辑加),开关 A 或 B 合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,2023/11/17,23,4、波形关系 高电平为“1”,低电平为“0”A、B中有一个为高,F就可以为高,或逻辑(X+Y 逻辑加),开关 A 或 B 合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,2023/11/17,24,非逻辑(X 逻辑反)我们用开关A 控制灯F 的亮与灭,说明“非”逻辑的功能。,定义:开关合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,2023/11/17,25,1、真值表 将AB各种可能的情况与 灯F的关系列表表示为:,非逻辑(X 逻辑反),开关合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,逻辑运算与数字逻辑电路,描述与逻辑功能有不同的手段,2023/11/17,26,2、逻辑函数表达式 F=A 将逻辑常量 0 1 代入:,0=1 1=0,非逻辑(X 逻辑反),开关合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,描述与逻辑功能有不同的手段,逻辑运算与数字逻辑电路,2023/11/17,27,3、逻辑符号,非逻辑(X 逻辑反),开关合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,描述与逻辑功能有不同的手段,逻辑运算与数字逻辑电路,2023/11/17,28,4、波形关系 高电平为“1”,低电平为“0”A与F完全相反,非逻辑(X 逻辑反),开关合上为“1”,断开为“0”。灯亮为“1”,灯灭为“0”。,描述与逻辑功能有不同的手段,逻辑运算与数字逻辑电路,2023/11/17,29,复合逻辑运算:将基本逻辑运算进行简单的组合。,逻辑运算与数字逻辑电路,B,A,AB,F,AB,与非逻辑运算:与逻辑 和 非逻辑 的组合,先 与 再 非。,2023/11/17,30,B,A,A+B,F,复合逻辑运算:将基本逻辑运算进行简单的组合。,逻辑运算与数字逻辑电路,或非逻辑运算:或逻辑 和 非逻辑 的组合,先 或 再 非。,F=A+B,2023/11/17,31,复合逻辑运算:将基本逻辑运算进行简单的组合。,逻辑运算与数字逻辑电路,与或非逻辑运算:与逻辑、或逻辑、非逻辑的组合。先 与 后 或 最后再 非。,F=AB+CD,2023/11/17,32,异或逻辑、同或逻辑:具有特殊功能的逻辑。,真值表:,异或:输入二变量相异为1,相同为0。同或:输入二变量相异为0,相同为1。,异或:F1=AB,逻辑运算与数字逻辑电路,B,F,A,B,F,A,同或:F2=AB,2023/11/17,33,例如 F=ABCD,由于不存在多变量的“异或”电路,故多变量的“异或”通过二变量“异或”实现。,F=F1 F2F1=AB F2=CD代入得:F=ABCD同理实现多变量的同或电路,逻辑运算与数字逻辑电路,异或逻辑:多变量。,2023/11/17,34,异或电路的特殊功能,00=0 01=1 10=1 11=00A=A 1A=A,控制端,逻辑运算与数字逻辑电路,C,F,A,C=0 F=A(A=1,F=1;A=0 F=0)C=1 F=A(A=1,F=0;A=0 F=1),2023/11/17,35,奇数个“1”相异或结果为“1”。偶数个“1”相异或结果为“0”。,逻辑运算与数字逻辑电路,异或电路的特殊功能:奇偶检测电路,利用此特性可十分方便组成奇偶校验位的产生电路。也可十分方便组成奇偶校验码的检验电路。,2023/11/17,36,B,A,D,C,P=0,奇偶检验位产生电路,奇校验码检测电路,检验输出,0,1,1,0,逻辑运算与数字逻辑电路,输入:ABCD=0110 则 P=0110=1接收:ABCDP=1 结果正确=0 结果出错,异或电路的特殊功能:奇偶检测电路,B,A,D,C,P,P,P=1,P=1,2023/11/17,37,B,A,D,C,P=0,奇偶检验位产生电路,偶校验码检测电路,检验输出,0,0,0,1,逻辑运算与数字逻辑电路,输入:ABCD=1000 则 P=1000=0接收:ABCDP=1 结果正确=0 结果出错,异或电路的特殊功能:奇偶检测电路,B,A,D,C,P,P,P=0,P=0,2023/11/17,38,本章的预备知识,1、晶体三极管与反相电路2、逻辑运算与数字逻辑电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,2023/11/17,39,逻辑电路设计步骤:,逻辑电路,逻辑表达式,最简表达式,真值表,逻辑功能,化简变换,通过逻辑问题设计逻辑电路,通过逻辑电路分析逻辑功能,2023/11/17,40,本章的预备知识,1、晶体三极管与反相电路2、逻辑运算与数字逻辑电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,2023/11/17,41,实际问题-真值表,1)根据逻辑要求列出真值表,例:在举重比赛中,有两名副裁判,一名主裁判。裁判认为合格的按动手中的电钮,当两名以上裁判(必须包括 主裁判在内)认为运动员上举杠铃合格,裁决合格信号灯亮,试设计该信号灯逻辑电路。解:设主裁判为变量 A,副裁判分别为 B 和 C;按下电钮为1,不按为 0。表示成功与否的灯为 Y,Y=1:灯亮合格,Y=0:不亮不合格。所以当 A=1,且 B C 中只要有一个为1,则Y=1。,2023/11/17,42,本章的预备知识,1、晶体三极管与反相电路2、逻辑运算与数字逻辑电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,2023/11/17,43,真值表-逻辑表达式,由真值表写出逻辑表达式的过程:1、用与逻辑写出真值表中每一横行中输出为1的逻辑表达式;A*B A*B A*B2、用或逻辑汇总出真值表中全部输出为1的逻辑;X=A*B+A*B+A*B,简单的逻辑关系,不写真值表,就可以直接给出逻辑表达式;更复杂的逻辑电路,我们把逻辑需求通过真值表把它写出来,,2023/11/17,44,例:在举重比赛中,有两名副裁判,一名主裁判。裁判认为合格的按动手中的电钮,当两名以上裁判(必须包括 主裁判在内)认为运动员上举杠铃合格,裁决合格信号灯亮,试设计该信号灯逻辑电路。,真值表-逻辑表达式,2023/11/17,45,本章的预备知识,1、晶体三极管与反相电路2、逻辑运算与数字逻辑电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,2023/11/17,46,同样的逻辑功能可以通过完全不同的逻辑表达式表示,相应的也就对应与不同的逻辑电路实现,有的复杂(很多门)有的简单(很少门)逻辑化简是数字逻辑电路设计的重要基础内容用真值表写出逻辑表达式后,并不是马上用对应的电路去实现,而是先看看是否可以化简化简有不同的标准,那么什么是最简呢?一般认为用的门少点会好,能简单就不求复杂,逻辑表达式-最简表达式,2023/11/17,47,逻辑关系可以采用数学公式来表示,例如逻辑表达式:A=B*C+E*F中,A为输出(运算结果),B、C、E、F为输入,*、+、-分别代表与、或、非运算符;运算符的优先级:非运算最高,与运算次之,或运算最低。这一逻辑运算功能,显然可以用 与门、或门、非门来实现,但在实现之前,为了使电路中门数最少,需要对数学公式进行推导运算并化简,而支持逻辑关系运算的数学工具就是布尔代数,又称逻辑代数。,逻辑表达式-最简表达式,2023/11/17,48,布尔代数运算的基本依据是以下的基本公式和规则:变换律A+B=B+A AB=BA结合律A+(B+C)=(A+B)+C A(BC)=(AB)C 分配律A+BC=(A+B)(A+C)A(B+C)=AB+AC吸收律A+AB=A A(A+B)=A 第二吸收律A+AB=A+B A(A+B)=AB 反演律A+B=AB AB=A+B包含律AB+AC+BC=AB+AC(A+B)(A+C)(B+C)=(A+B)(A+C)重叠律A+A=A AA=A 互补律A+A=1 AA=0 0-1律0+A=A1A=A0A=01+A=1,A=A,逻辑表达式-最简表达式,2023/11/17,49,1)代数化简法 直接利用布尔代数的基本公式和规则进行化简的一种方法。例:化简逻辑函数 F=AB+AC+BCDF=AB+C+BCD=(AB+C+BC)+BCD AB+AC+BC=AB+AC=(AB+C)+(BC+BCD)A+AB=A=(AB+C)+BC AB+AC+BC=AB+AC=AB+C,逻辑表达式-最简表达式,2023/11/17,50,最小项:由全部变量或其反变量形成的逻辑乘积项;对n个变量,共有2n个最小项。例如:有A,B两个变量,它有4个最小项:AB,AB,AB,AB。卡诺图是一种直观的平面方块图。它将平面划分为2n个小格,用来表示全部2n个最小项。,2)卡诺图化简法 借助于卡诺图的一种几何化简法。代数化简法技巧性强,化简的结果是否最简不易判断;卡诺图化简法肯定能得到最简结果,只适用于变量较少的情况。,逻辑表达式-最简表达式,2023/11/17,51,三变量卡诺图,四变量卡诺图,两相邻小格之间只能有一个变量相反,其余的变量都相同。周边变量原码为“1”、反码为“0”。,小格中的数字对应的是最小项的取值。CBA 000 001 011 0100132,2023/11/17,52,任何一个函数都可展开为若干个最小项之和;卡诺图可以表示任意一个逻辑函数。例如:函数 F=ABC+BCD,可以转换成四个最小项ABCD,ABCD,ABCD,ABCD之或,在四变量卡诺图相应的四个小格上填“1”来表示该函数。,1,1,1,1,逻辑变量的卡诺图表示,ABCD+ABCD=ABC*(D+D)=ABC*1=ABC,逻辑表达式-最简表达式,2023/11/17,53,例如:用卡诺图法化简函数 F=ACD+ABC+ABD+BCD+AC+BCD+ABD1)将函数F用卡诺图表示。2)合并最小项。任意两个相邻小块构成1维块可后减少一个变量,两相邻的1维块构成2维块又可减少一个变量。逻辑化简:将卡诺图中填“1”的小块尽量合并,用最少变量写出该布尔式。注意:同一小块可重复使用多次。,1,1,1,1,1,1,1,1,1,逻辑表达式-最简表达式,2023/11/17,54,例如:化简函数F=ACD+ABC+ABD+BCD+AC+BCD+ABD1)方案一、合并(0,2)、(1,5)、(14,10)、(5,7,13,15)F=ACD+ABD+ABD+AC2)方案二、合并(0,1)、(2,10)、(5,7,13,15)、(14,10)F=BCD+ABC+AC+ABD,逻辑表达式-最简表达式,2023/11/17,55,例:在举重比赛中,有两名副裁判,一名主裁判。裁判认为合格的按动手中的电钮,当两名以上裁判(必须包括 主裁判在内)认为运动员上举杠铃合格,裁决合格信号灯亮,试设计该信号灯逻辑电路。,3)化简逻辑表达式:Y=A*B*C+A*B*C+A*B*C,1,1,Y=A*B*C+A*B*C+A*B*C=A*B+A*C,1,逻辑表达式-最简表达式,2023/11/17,56,1、晶体三极管与反相电路2、逻辑运算与数字电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,本章的预备知识,2023/11/17,57,例:在举重比赛中,有两名副裁判,一名主裁判。裁判认为合格的按动手中的电钮,当两名以上裁判(必须包括 主裁判在内)认为运动员上举杠铃合格,裁决合格信号灯亮,试设计该信号灯逻辑电路。,4)画出逻辑电路图,Y=A*B+A*C,最简表达式-逻辑电路图,2023/11/17,58,本章的预备知识,1、晶体三极管与反相电路2、逻辑运算与数字电路3、通过逻辑功能设计逻辑电路 3.1、实际问题-真值表 3.2、真值表-逻辑表达式 3.3、逻辑表达式-化简得:最简表达式 3.4、最简表达式-逻辑电路图4、三态门电路,2023/11/17,59,由于计算机CPU采用总线结构,外设均挂在总线上,CPU每一时刻仅能与一个外设交换信息,此时其他外设必须与总线脱钩,使之不影响总线的状态。否则将破坏系统的正常工作,这就要求连接到总线的接口电路必须具有三态结构,除了0 态和1态外,还增加一个高阻态。,三态门电路,三态门电路是一种最重要的总线接口电路;是构建计算机总线的理想电路。三态:是指电路可以输出正常的 0(低电平)或 1(高电平),也可以处于高阻态(输出既不是 0 也不是 1),取决于输入和控制信号。为高阻态时,0 和 1 的输出极都截止,相当于这个电路与所连接的线路断开,便于实现从多个数据输入中选择其一。,2023/11/17,60,三态门:具有三种逻辑状态的门电路。0 状态,1 状态,浮空状态,三态门电路,当控制信号G为低电平(0)三态门的输入 D 被送到总线上,输出Q。,2023/11/17,61,1)、单向总线电路 总线上的信息只能向一个方向传送,如地址总线。,三态门电路,G,2023/11/17,62,2)、双向总线电路 总线上的信息可以向两个方向上传送,如数据总线。,三态门电路,G,2023/11/17,63,作业,题目:设计一个三人表决电路,结果按“少数服从多数”的原则决定。提示:A B C 三人 与表决结果 L。当 A B C 中任意两个为 1(同意)时 L 为 1(1 通过)。,