解直角三角形(第三课时.ppt
利用解直角三角形的知识解决实际问题的一般过程是:,1.将实际问题抽象为数学问题;,(画出平面图形,转化为解直角三角形的问题),2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;,3.得到数学问题的答案;,4.得到实际问题的答案.,解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l,化整为零,积零为整,化曲为直,以直代曲的解决问题的策略,与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢?,我们设法“化曲为直,以直代曲”我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1.,在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,hn,然后我们再“积零为整”,把h1,h2,hn相加,于是得到山高h.,h,l,以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容,1.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和;(2)坝顶宽AD和斜坡AB的长,解:(1)在RtAFB中,AFB=90,在RtCDE中,CED=90,2.如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远?,解:如图,在RtAPC中,,PCPAcos(9065),80cos25,在RtBPC中,B34,65,34,P,B,C,A,练习:海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60方向上,航行12海里到达D点,这时测得小岛A在北偏东30方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?,B,A,D,F,60,12,30,1.海中有一个小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向到航行,在B点测得小岛A在北偏东60方向上,航行12海里到达D点,这时测得小岛A在北偏到30方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?,B,A,D,F,解:由点A作BD的垂线,交BD的延长线于点F,垂足为F,AFD=90,由题意图示可知DAF=30,设DF=x,AD=2x,则在RtADF中,根据勾股定理,在RtABF中,,解得x=6,10.4 8没有触礁危险,练习,30,60,1.在解直角三角形及应用时经常接触到的一些概念(仰角,俯角;方位角等)2.实际问题向数学模型的转化(解直角三角形),知识小结,利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案,